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Outline •

1 Two words about interfacial physics

2 True contact area

How does it grow with the squeezing force?

3 Interfacial fluid flow

How does the permeability decay with the squeezing force?

4 Conclusions & perspectives

How physical are the assumptions and results?

Objective:
link roughness parameters with the evolution of the true contact area

and interface permeability with external pressure.
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Contact between rough surfaces



Contact under microscope •
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Contact under microscope •
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Problem statement & methods •

Problem

Solve contact problem for two elastic half-spaces E1, ν1 and E2, ν2

With surface roughnesses z1(x, y) and z2(x, y)
Balance of momentum ∇ · σ

=
= 0,

Boundary conditions −σ∞z = p0

Contact constraints g ≥ 0, p ≥ 0, g p = 0,
where g(x, y) is the gap between surfaces,
p = −n · σ

=
· n is the contact pressure.

Methods

Finite element method

[1] Yastrebov, Wiley/ISTE (2013)

Boundary element method

[2] Stanley & Kato, J Tribol 119 (1997)
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Mapping •

Problem mapping

Flat elastic[1] half-space with E∗ =
E1E2

E2(1 − ν2
1) + E1(1 − ν2

2)

Rough rigid[1] surface with z∗ = z2 − z1

Optimization problem[2]: min F
under constraints p ≥ 0 and 1

A0

∫

A

pdA = p0,

with F =
∫

A

p[uz/2 + g]dA

[1] Barber, Bounds on the electrical resistance between contacting elastic rough bodies, PRSL A 459 (2003)
[2] Kalker, Variational Principles of Contact Elastostatics, J Inst Maths Applics (1977)
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Analytical models •

Multi-asperity models
[1] Greenwood, Williamson. P Roy Soc Lond A Mat (1966)

[2] Bush, Gibson, Thomas. Wear (1975)

[3] Mc Cool. Wear (1986)

[4] Thomas. Rough Surfaces (1999)

[5] Greenwood. Wear (2006)

[6] Carbone. J. Mech. Phys. Solids (2009)

[7] Ciavarella, Greenwood, Paggi. Wear (2008)

Persson’s model
[8] Persson. J. Chem. Phys. (2001)

[9] Persson. Phys. Rev. Lett. (2001)

[10] Persson, Bucher, Chiaia. Phys. Rev. B (2002)

[11] Müser. Phys. Rev. Lett. (2008)

Cross-link studies
[12] Manners, Greenwood. Wear (2006)

[13] Carbone, Bottiglione. J. Mech. Phys. Solids (2008)

[14] Paggi, Ciavarella. Wear (2010)

Fig. Multi-asperity models
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Analytical models •

Fig. Roughness and detected asperities for L/λl = 4 and L/λs = 16
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Analytical models •

Fig. Roughness and detected asperities for L/λl = 4 and L/λs = 64
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Analytical models •

Fig. Hertz’s theory of contact
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Analytical models •
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[3] Mc Cool. Wear (1986)
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[7] Ciavarella, Greenwood, Paggi. Wear (2008)
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Fig. Persson’s model

∂P(p, ζ)
∂V(ζ)

=
1
2
∂2P(p, ζ)
∂p2

P(0, ζ) = 0

V(ζ) = 1
2 E∗m2(ζ) = πE∗

2

ζkl∫

kl

k3Φp(k)dk
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Why is the sky dark at night? •
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Why is the sky dark at night? •

Olbers’ paradox or “dark night sky paradox”

Two nominally-flat elastic half-spaces in contact

At small scale they are rough with asperity density D

Vertical displacement decay uz ∼ 1/r

At every asperity, force F

Sum up displacements induced by all forces∗

uz ∼
2π∫

0

R∫

r0

F

r
r dr dφ −−−−→

R→∞
∞

∗In case of light intensity I, it decays as 1/r2 but the integral is in volume for a constant start density
the integral light intensity is:

I ∼
2π∫

0

π/2∫

0

R∫

r0

I

r2
r2 sin(θ) dr dφdθ
︸               ︷︷               ︸

Volume element

−−−−→
R→∞

∞
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Comparison of models •

Multi-asperity models Persson’s model
1. Evolution of the real contact area A(p0) for A/A0 → 0

A

A0
=

κ

√

〈|∇z|2〉
p0

E∗

κBGT =
√

2π ≈ 2.5 according to [2-5] κP =
√

8/π ≈ 1.6 according to [6-7]

2. Evolution of the real contact area A(p0) for ∀A/A0

A
A0
= A(p0, α )/A0 according to [2-5] A

A0
= erf

(√

2
〈|∇z|2〉

p0
E∗

)

according to [6-7]

[1] Greenwood, Williamson, P Roy Soc Lond A Mat 295 (1966)

[2] Bush, Gibson, Thomas, Wear 35 (1975)

[3] Mc Cool, Wear 107 (1986)

[4] Thomas, Rough Surfaces (1999)

[5] Greenwood, Wear 261 (2006)

[6] Persson, J. Chem. Phys. 115 (2001)

[7] Persson, Phys. Rev. Lett. 87 (2001)

[8] Persson, Bucher, Chiaia, Phys. Rev. B 65 (2002)

[9] Müser, Phys. Rev. Lett. 100, (2008)
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Simulations set-up •
• Cut-off parameters: L/λl ⊗ L/λs = {1, 2, 4, 8, 16} ⊗ {32, 64, 128, 256, 512}
• Hurst exponent H = {0.4, 0.8}
• 10 random surface realizations per combination of parameters
• Discretization: {L/∆x} × {L/∆x} = 2048 × 2048
• Search for contact area A′, gap field g(x, y) and gap PDF P(g)
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •

V.A. Yastrebov Lecture 7 20/104



Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Contact area and contact pressure evolution •
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Results: contact area •

Multi-asperity models asymptotic[1,2], Persson’s model[3]

[1] Bush, Gibson, Thomas, Wear 35 (1975), [2] Carbone, Bottiglione. J. Mech. Phys. Solids (2008), [3] Persson. J. Chem. Phys. (2001)
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Results: contact area •

Multi-asperity models asymptotic[1,2], Persson’s model[3]

[1] Bush, Gibson, Thomas, Wear 35 (1975), [2] Carbone, Bottiglione. J. Mech. Phys. Solids (2008), [3] Persson. J. Chem. Phys. (2001)
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Real contact area: interpretation of results? •

Raw data
[1] Yastrebov, Anciaux, Molinari, Int J Solids Struct 52 (2015)
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Numerical error correction •

Contact area is overestimated in
simulations:

Asim > A∗
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Numerical error correction •

Contact area is overestimated in
simulations:

Asim > A∗

The overestimation is localized at
boundary nodes:

Asim > A∗ > Aint
sim
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Numerical error correction •

Contact area is overestimated in
simulations:

Asim > A∗

The overestimation is localized at
boundary nodes:

Asim > A∗ > Aint
sim

Boundary area ∼ perimeter Sd:

Asim − Aint
sim = Sd∆x
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Numerical error correction •

Contact area is overestimated in
simulations:

Asim > A∗

The overestimation is localized at
boundary nodes:

Asim > A∗ > Aint
sim

Boundary area ∼ perimeter Sd:

Asim − Aint
sim = Sd∆x

Manhattan Sd vs Euclidean metric S:

〈S〉 = π4 〈Sd〉
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Numerical error correction •

Contact area is overestimated in
simulations:

Asim > A∗

The overestimation is localized at
boundary nodes:

Asim > A∗ > Aint
sim

Boundary area ∼ perimeter Sd:

Asim − Aint
sim = Sd∆x

Manhattan Sd vs Euclidean metric S:

〈S〉 = π4 〈Sd〉
True contact area estimation:

A∗ ≈ Asim − β
π

4
Sd∆x
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Numerical error correction: corrective factor •

Corrective factor β =
〈asm〉
∆x2

=
1
∆x2

h∫

0

π∫

0

asmP(x, φ) dxdφ =
π − 1 + ln 2

6π

β = 0.150387618994810151606955 . . .

True area estimation: A∗ ≈ Asim −
π − 1 + ln 2

24
Sd∆x
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Numerical error correction: convergence study •

[1] Yastrebov, Anciaux, Molinari, Tribol Int 114 (2017)
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Numerical error correction: convergence study •

[1] Yastrebov, Anciaux, Molinari, Tribol Int 114 (2017)
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Morphological correction •
•Morphology of contact clusters
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Morphological correction •
•Morphology of contact clusters

Topologically preserving smoothing results in realistic cluster geometry
[1] Couprie & Bertrand, J Electr Imag 13 (2004)
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Real contact area: accurate results •

Raw data
[1] Yastrebov, Anciaux, Molinari, Int J Solids Struct 52 (2015)
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Real contact area: accurate results •

Corrected data
[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)
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Real contact area: accurate results •

Corrected data
[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)
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Real contact area: accurate results •

Corrected data
[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)
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Results: contact area •

Corrected contact area (discretization independent): “magic” formula[1,2]

A∗ ≈ Asim − π−1+ln 2
24 Sd∆x,

where Sd is the integral perimeter of the contact zones.
[1] Yastrebov, Anciaux, Molinari, Tribol. Int. 114 (2017)

[2] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)
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Role of Nayak parameter α •

Nayak parameter, α
10 100 10005 50 500

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

N
o

rm
al

iz
ed

 c
o

n
ta

ct
 a

re
a 

se
ca

n
t,

 A
'/
p

'

Corrected simulation  results p'=0.02

 

Logarithmic fit f(p',α) = c(p') - d(p') ln(α-1.5)
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Numerical results: [1] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)
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Role of Nayak parameter α •

1.5
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Simplified elliptic model

p' = 0.0001

p' = 0.001

p' = 0.01

p' = 0.02

Numerical results: [1] Yastrebov, Anciaux, Molinari, J Mech Phys Solids 107 (2017)

Simplified elliptic model: [2] Greenwood, Wear (2006)
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Role of Nayak parameter α •

Comparison with other numerical studies
Nayak-Hurst relationship

α(H, ζ) = 3
2

(1−H)2

H(H−2)
(ζ−2H−1)(ζ4−2H−1)

(ζ2−2H−1)2
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Role of Nayak parameter α •

Comparison with other numerical studies
Nayak-Hurst relationship
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Phenomenological relationship •

Contact area A grows with applied pressure p0 as

A

A0
= a(α)

p0

E∗
√

2m2
− b(α)

[

p0

E∗
√

2m2

]2

Contact area fraction A′ = A/A0 grows with
normalized applied pressure p′ = p0/E

∗ √2m2

A′ = a(α)p′ − b(α)p′2

With ≈universal adimensional constants:

a(α) = 2.35 − 0.057 ln(α − 1.5)

b(α) = 2.85 − 0.24 ln(α − 1.5)

Pressure dependent friction coefficient:

µ(p′) = µ0

[

1 − b(α)
a(α)

p′
]

with µ0 = a(α)τmax/E∗
√

2m2,
τmax is the maximum shear traction the contact
interface can bear.
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Conclusions •

Contact area growth almost linearly for small pressures and
saturates at bigger pressure
The key parameter of the contact area growth is the RMS slope or
its variance 2m2

Contact area depends weakly on Nayak parameter α = m0m4/m2
2

A′ = a(α)p′ − b(α)p′2

with a(α) = 2.35− 0.057 ln(α− 1.5), b(α) = 2.85− 0.24 ln(α− 1.5)
No effect of fractal dimension Df per se on the contact area
it affects the contact area only through the Nayak parameter
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Flow through the
contact interface



Problem statement •

Problem

Thin creeping flow in contact interface:
Navier-Stokes→ Stokes→ Reynolds equation
In addition: incompressible fluid, immobile walls:

∇ · q = 0, q = −
g3

12µ
∇pf

q(x, y) is the fluid flux,
g(x, y) is the gap (opening) fields,
pf (x, y) hydrostatic fluid pressure,
µ is the dynamic viscosity.

Gap profile g(x, y) for x, y ∈ (0,L)

At inlet: pf = pin

At outlet: pf = pout

At lateral sides: periodic
qn(y = L) = −qn(y = 0)

Linear problem: use FEM
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Analytical approach •

Effective flow estimation

Averaging over surface 〈x〉 = 1/A0

∫

A0
x dA gives:

〈 q 〉 = −K
=eff
· 〈∇pf 〉

For isotropic case, normalized scalar effective transmissivity
along pressure drop OX:

K′eff = −
12µ〈 qx 〉L

m3/2
0 (pin − pout)

Using effective medium[1,2] approach

(1 − A′)

∞∫

0

g3P(g)

g3 + K′effm
3/2
0

dg =
1
2

A′ = A/A0 is the contact area fraction, P(g) is the gap probability
density.

[1] Kirkpatrick. Rev Modern Phys, 45 (1973)
[2] Lorenz & Persson. Europ Phys J E: Soft Matter, 31 (2010)
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Danger: geometrical overlap •

Geometrical overlap model is highly inaccurate
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Danger: geometrical overlap •

Geometrical overlap model is highly inaccurate
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Solid contact results: gap distribution •

Area fraction A′ = 1.6%

Gap probability density VS geometrical overlap model (dashed line)
Near contact interface P(g) ∼ P(z0 − z) + a exp(−b

√
z0 − z)
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Solid contact results: gap distribution •

Area fraction A′ = 9.5%

Gap probability density VS geometrical overlap model (dashed line)
Near contact interface P(g) ∼ P(z0 − z) + a exp(−b

√
z0 − z)
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Solid contact results: gap distribution •

Area fraction A′ = 24%

Gap probability density VS geometrical overlap model (dashed line)
Near contact interface P(g) ∼ P(z0 − z) + a exp(−b

√
z0 − z)
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Solid contact results: gap distribution •

Area fraction A′ = 39%

Gap probability density VS geometrical overlap model (dashed line)
Near contact interface P(g) ∼ P(z0 − z) + a exp(−b

√
z0 − z)
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Geometrical overlap: morphology and percolation •

Geometrical overlap model is highly inaccurate[1,2]

[1] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012)

[2] Yastrebov, Anciaux, Molinari. Tribol Lett, 56 (2014)
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Geometrical overlap: morphology and percolation •

Geometrical overlap model is highly inaccurate[1,2]

[1] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012)

[2] Yastrebov, Anciaux, Molinari. Tribol Lett, 56 (2014)
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Geometrical overlap: morphology and percolation •

Geometrical overlap model is highly inaccurate[1,2]

[1] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012)

[2] Yastrebov, Anciaux, Molinari. Tribol Lett, 56 (2014)
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Geometrical overlap: morphology and percolation •

Geometrical overlap model is highly inaccurate[1,2]

[1] Dapp, Lücke, Persson, Müser, Phys. Rev. Lett. 108 (2012)

[2] Yastrebov, Anciaux, Molinari. Tribol Lett, 56 (2014)
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •

V.A. Yastrebov Lecture 7 76/104



Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Creeping fluid transport •
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Contact area & trapped fluid •

Contact area does not conduct flow

Fig. Fluid flux
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Contact area & trapped fluid •

Contact area does not conduct flow

Fig. Fluid flux
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Contact area & trapped fluid •

Contact area does not conduct flow

Fig. Fluid flux
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Contact area & trapped fluid •

Contact area does not conduct flow

Fig. Fluid flux (zoom)
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Contact area & trapped fluid •

Contact area does not conduct flow

Islands of trapped fluid ≡
non-simply connected contact spots
do not contribute to conduction

Thus the effective transmissivity
depends on the
effective contact area:

A′eff = A′ + A′t
A′ is the contact area fraction
A′t is the area of trapped fluid

Effective medium transmissivity:

(1 − A′eff)

∞∫

0

g3P(g)

g3 + K′effm
3/2
0

dg =
1
2

Fig. Fluid flux (zoom)

[1] Shvarts, Yastrebov. Trapped Fluid in the Contact Interface, JMPS:119 (2018)
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Contact area & trapped fluid •

Contact area does not conduct flow

Islands of trapped fluid ≡
non-simply connected contact spots
do not contribute to conduction

Thus the effective transmissivity
depends on the
effective contact area:

A′eff = A′ + A′t
A′ is the contact area fraction
A′t is the area of trapped fluid

Effective medium transmissivity:

(1 − A′eff)

∞∫

0

g3P(g)

g3 + K′effm
3/2
0

dg =
1
2

Fig. Fluid flux

[1] Shvarts, Yastrebov. Trapped Fluid in the Contact Interface, JMPS:119 (2018)
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Effective contact area •
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Effective contact area •
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Normalized effective transmissivity •

Fig. Evolution of the effective transmissivity
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Effective transmissivity •

Effective area wrt load:

A′eff ≈ 2.15p′

Normalized load:

p′ = p0/E
∗ √2m2

Normalized effective
transmissivity wrt effective area:

K′eff ≈ 500 exp(−28A′eff)
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Effective transmissivity •

Effective area wrt load:

A′eff ≈ 2.15p′

Normalized load:

p′ = p0/E
∗ √2m2

Normalized effective
transmissivity wrt effective area:

K′eff ≈ 500 exp(−28A′eff)

Recall:

K′eff = −
12µ〈 qx 〉L
m3/2

0 ∆Pf

Express the mean flow:

〈 qx 〉 = −
K′effm

3/2
0 ∆Pf

12µL

Finally:

〈 qx 〉 ≈ −
41.7 exp(−42.57p0/E

∗ √m2)m3/2
0 ∆Pf

µL
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Conclusion & current work •

Main result:

Mean flow (far from the percolation) through contact of nominal area
L × L:

〈 qx 〉 ≈ −
41.7m0

3/2∆Pf

µL
· exp

(

−42.57
p0

E∗
√

m2

)

u is dynamic viscosity,
∆Pf is the pressure drop between the inlet and the outlet,
p0 is the nominal applied pressure,
E∗ is the effective elastic modulus.
Roughness parameters:
m0 is the variance of roughness,
2m2 is the variance of roughness gradient.
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Conclusion & current work •

Main result:

Mean flow (far from the percolation) through contact of nominal area
L × L:

〈 qx 〉 ≈ −
41.7m0

3/2∆Pf

µL
· exp

(

−42.57
p0

E∗
√

m2

)

u is dynamic viscosity,
∆Pf is the pressure drop between the inlet and the outlet,
p0 is the nominal applied pressure,
E∗ is the effective elastic modulus.
Roughness parameters:
m0 is the variance of roughness,
2m2 is the variance of roughness gradient.

Beyond the one-way coupling:

Monolithic two-way FEM[1] framework coupling solid and fluid
equations (thin flow, Reynolds equation) with contacts including
islands of non-linear compressible fluid

[1] A.G. Shvarts, J. Vignollet, V.A. Yastrebov. "Computational framework for monolithic coupling for thin fluid flow in contact interfaces".
Computer Methods in Applied Mechanics and Engineering, 379:113738 (2021).
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General conclusion •

The most critical assumption is the existence of the small wavelength
cutoff
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General conclusion •

The most critical assumption is the existence of the small wavelength
cutoff

Fractal limit:
Let λs → 0, then m2 →∞ and ∀p0 < ∞,A′ → 0
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General conclusion •

The most critical assumption is the existence of the small wavelength
cutoff

Fractal limit:
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Add some physics:
Let λs ∼ Å, then m2 < C < ∞ and ∀p0 > 0,A′ > 0
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General conclusion •

The most critical assumption is the existence of the small wavelength
cutoff

Fractal limit:
Let λs → 0, then m2 →∞ and ∀p0 < ∞,A′ → 0
Add some physics:
Let λs ∼ Å, then m2 < C < ∞ and ∀p0 > 0,A′ > 0
But, at Å-scales, continuum mechanics and especially continuum
contact[1] do not work.

[1] Luan & Robbins. Nature 435 (2005).
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General conclusion •

The most critical assumption is the existence of the small wavelength
cutoff

Fractal limit:
Let λs → 0, then m2 →∞ and ∀p0 < ∞,A′ → 0
Add some physics:
Let λs ∼ Å, then m2 < C < ∞ and ∀p0 > 0,A′ > 0
But, at Å-scales, continuum mechanics and especially continuum
contact[1] do not work.
Search for relevant physics that could justify λs ≫ Å.
Candidates: plasticity (scale dependent), surface energy and
adhesion, interaction potential.

[1] Luan & Robbins. Nature 435 (2005).
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, Thank you for your attention!


