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Lubrication

m Regimes of lubrication

m Derivation of the Reynolds equation

®m Analytical solution for hydrostatic lubrication in bearings
m Elasto-hydrodynamic lubrication

Sealing

m Metal-to-metal face seal for nuclear power plant applications
m Fluid-structure coupling
m Results of FE numerical simulation
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Lubrication: what is it?

m Lubrication: technique to reduce
friction and wear between relatively
moving surfaces by adding a
solid/liquid/gas lubricant

m Studied in Tribology (Greek: tribo -
"to rub”, logy - "study of")
"The Jost Report” (1966): L
cost of friction, wear and corrosion :,lw;lcla;tﬁ;ecr o
to UK economy P.jost (1966)

m Applications:

- gears - seals
- bearings - cams
- piston heads - metal forming
- human joints -HDD ...
m Recent report (2017):
23% of total world energy losses Lubricating a bike chain

. . www.madegood.org
come from tribological contacts

(20% friction, 3% wear)
K. Holmberg, A. Erdemir, Friction (2017)
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Lubrication: what is it?

m Lubrication: technique to reduce
friction and wear between relatively
moving surfaces by adding a
solid/liquid/gas lubricant

m Studied in Tribology (Greek: tribo -
"to rub”, logy - "study of")
"The Jost Report” (1966):
cost of friction, wear and corrosion Lubricant over gears
to UK economy P, Jost (1966) www.efficientplantmag.com

m Applications:

- gears - seals

- bearings - cams

- piston heads - metal forming
- human joints -HDD ...

m Recent report (2017):
23% of total world energy losses
come from tribological contacts

o e Lubricated roller bearin,
(20% friction, 3% wear) www.bearingtips.comg

K. Holmberg, A. Erdemir, Friction (2017)
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Lubrication regimes: Stribeck curve

P e

A

Mixed (Partial):  (Elasto) Hydrodynamic lubrication
lubrication

Boundary
lubrication

Friction coefficient

Lubrication parameter, # U/P
(viscosity x velocity / normal load)

Adapted from www.wikipedia.org

R. Stribeck (1901)
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Hydrodynamic lubrication (HL)

m Conforming surfaces

m No elastic effect

m Normal load fully supported by
thin fluid film /
velocity
L hmin =f(P/ U;TIIR)

m p <5MPa, hpin > 1 um \K

®m Mechanism of pressure

dEVEIOPment in fluid film: Concentric journal bearing
Adapted from www.wikipedia.org

Py 1 1
I EEam
— Finin ——>
e o — nin. —> ’ m ‘
u
Slider bearing Squeeze film bearing Externally pressurized bearing
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m Viscous stresses in flowing fluid
are linearly proportional to the
strain rate - the gradient of the
velocity:

Ju
T=7]£

B 7 is the shear stress in the
fluid

m 7 is the viscosity of the fluid

[ ] ‘3—; is the shear strain rate

m In general 3D case for arbitrary
coordinate system:

(P, 9
T = x; O

Shvarts & Yastrebov

Newtonian fluid

~ 4 moving boundary
i it

velocity profile, u

no-slip boundary
conditions

N\

stationary boundary

Laminar shear of fluid between two rigid plates

viscosity,
shear stress, T

() (b)

shear strain rate, du/dy

shear strain rate, du/dy
Properties of Newtonian fluid:
(a) viscosity vs shear strain rate

(b) shear stress vs shear strain rate



Petrov’s equati

m Shear stress:

u u
TG T

m Frictional reaction:

T = At = 2nrb) r]%

m The coefficient of friction:

I_znrbﬂ
P~ h P

| (Blasto) Hydrodynamic lubrication

Friction coefficient

b

h<r

Concentric journal bearing

M

Lubrication parameter, nU/P

Petrov’s law
N.P. Petrov (1883)
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Developed journal and bearing surfaces

r

b
u
P
h

radius of journal
width of journal
linear velocity
normal load

radial clearance



Stresses on the surface of a fluid element

m Stresses on the surface of a fluid

element: o
absolute viscosity
ou; o :
T = ( a_xl + a_x/ , T =T p hydrostatic pressure
I ! x; coordinates

2 du; u; velocity componets
0j==p =NV u+2n-— . .
3 Ix; g acceleration of gravity
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Navier-Stokes equations

m Newton’s second law of motion for a fluid element:

Du v
— = + -0
P D g g
—— —— ——
inertia forces body forces  surface forces

m Material derivative:

Du _ ou | ou odu o
Df ot Mo T TV
—— ——

total derivative  local derivative convective derivative

m Navier-Stokes equations:
Du

PDr =p§-VP-%V(Ww_t)+2(V~(nV))z+V><(n(sz))

m 4 unknowns: u,v,w, p; 3 equations + the continuity equation
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Continuity equation

m Flux is a mass of fluid flowing per unit time through a unit area:

qg=pu

Conservation of mass: outflow of mass from a volume equals to
decrease of mass within the volume (integral form):

dm
ﬁ+#(g~g)d5—0
S

m The divergence theorem:

ggg(c_lﬂ)dS:fvj‘f(V-g)dV

m Differential form of continuity equation:

%P V- (o) =0
5V (ow =

m If density p is constant: V-u =0
Shvarts & Yastrebov 10/33



Towards the Reynolds equation

m Introducing dimensionless variables:

X=—, Y==, Z=—, T=—, ii=—
lo bo hO tO " Up

hz

0=, w=2, p=L g2l po W
(4 wWo Po Mo Uouolo

m Reynolds number:
_ Inertia _ potiolo

Viscous Mo

m Thin fluid film: hy < ), R<1

dp_9(
ox  0dz 7]82

dp 9 [ dv
353 1%)
%=0—>P=p(xy)
0z !
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locity profile

u_(?_p_zz—zh+u Ziu (1—5)
T ox 2n Th T2 h

_—
Poiseuille flow Couette flow

uy

;=0 e S
— h h
1 T )
At rest, u,=0 Atrest, u,=0

Poiseuille flow Couette flow

iy

LL/ LLLLLLLL
h

\ AN

At rest, =0
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Calculating flow rates

op 22 -
u:_pz Zh+ulz+u2(1—%)

ax 27 h
op 22 — zh z z
U—@T‘F’Ulﬁ +02(1_E)

Flow rate per unit width in x and y directions:

=
=
I
Lo
=
S
N
|
|
|w
w
Y
B
=
5
+
=
N
=

, _ W ap U1+ 0y
qy—fvdZ——m@+ 5 h

Integrating continuity equation across film thickness:

h

ap
f[E+Vy]dZ—O
0

Shvarts & Yastrebov 13/33



Reynolds equation

m General form in 3D:

J (P_hsar’)Jr 9 (Ph3 31!’) (11 +13) Iph) | (01 +v) I(ph)

Ip
— - +h
ox \12n ox &y 121 dy

2 ox 2 dy ot

m If p, 1 are constant:

Li(h 8p)+ii(h3ap)_ (H1+M2)3_h+ (v1 +v2) Jh

12ndx\" ox| 12nady\ dy) 2 ox 2 dy
m In2D: 5 P
k4 p
2x (h ax) ot + 1) 5

O. Reynolds (1886)
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Physically relevant models

m Non-Newtonian fluid:

du
1=/(%)
m Viscosity-pressure dependency: Barus law
1(p) = 1oe™”
m Fluid compressibility:
K=_y® _ %
S Tav TP

p = poelr Pk

m Cavitation: process of bubble generation due to local pressure decline
below saturated vapor pressure and subsequent bubble collapse when

the pressure is increased.
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Step slider bearing

m Reynolds equation A ! Y
(p = const, n = const): nl
d 3 d}? dh K
i (h d_) = Uz
z hy
m Constant film thickness in both T
sections: — x

ho +s 0<x<mnl
h(x) =

ho nl<x<l
P _y 0;nl) U (nl;1
“2=0, xe@u) U

W _ const 0; l) U (1l; 1
dx—cons, x € (0;nl) U (nl;1)
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Step slider bearing

m Continuity of pressure: A — ! Y
plx:nl—() = p'x:nl+0 = Pm
N
dp dp
Vll(a) = —(1 - ?’l)l (E)
i 0 TZ hy
m Continuity of flow rate: x
q;,i = q;,u
ot 9? (dp) uthots) My (dp) | uho
12n \dx), 2 12p\dx) 2
® Maximum pressure:
S n(l —n)s
(1 = n)(ho + 5)> + nh}
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Step slider bearing

m Pressure distribution:

pmf 0<x<mnl
nl
plx) = I—x

pmm nl<x<l

n(l —n)s
1= n)(ho +5)> + nh}

m = 6nul
p Ui [(

m Optimal bearing configuration to
produce the largest p,,:

Wm W
W =0 and 25

{ (1 =n)*(ho +s)* —n*h) =0
(1 —n)(ho + 5)*(ho — 25) + nhg =0

=0

m Optimal values:

@ =1.155, n=0.7182

Shvarts & Yastrebov

nl

ho

e :

nl

(1-n)l
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Elastohydrodynamic lubrication (EHL)

m Non-conforming surfaces

m Elastic deflection of solid walls

m Viscosity-pressure dependence:
1(p) =no exp p

m Hard EHL (metal parts):
0.5GPa <p <3 GPa
0.1 yum < hpin £ 1 um

Needle roller bearing
- gears www.farazbearing.com

- rolling bearings
- cams

m Soft EHL (polymer):
p =1 MPa
hmin ~ 1 [«lm

- seals
- human joints

- tires Bevel gear www.linngear.com
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Elastohydrodynamic lubrication (EHL)

m Non-conforming surfaces

m Elastic deflection of solid walls

m Viscosity-pressure dependence:
1(p) =no exp p

m Hard EHL (metal parts):
0.5GPa <p <3 GPa
0.1 yum < hpin £ 1 um

- gears

- rolling bearings Nontrivial joint
& & www.wikipedia.org
- cams

m Soft EHL (polymer):
p =1 MPa
hmin ~ 1 Hm

- seals
- human joints
- tires 0-Ring

O-ring seal
www.ecosealthailand.com
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m Reynolds equation:

3
d(h_d_p)_lz dh
n dx

dx B ”E

m Viscosity-pressure dependence
(Barus law):

n(p) = mo e

m Film shape:
h(x) = ho + S(x) + 6(x)

hy  constant

2
S(x) = ;—R undeformed geometry
O(x) elastic deformation
m Contact constraints:
ho+S(x)+6(x)=0, p>0
ho+S(x)+6(x)>0, p=0

Shvarts & Yastrebov

Elastohydrodynamic lubrication (EHL)

ANV
Coupling of fluid and elastic problems

TRRRNNN NN TRRNNANN

Results of numerical simulations['/2]

[1] D. Dowson, Wear (1995)
[2] B.J. Hamrock, "Fundamental of fluid film lubrica-

tion™" (1991)
18/33



EHL film thickness: experimental observation

m Ball-on-disk optical B micrascope objective
. light be
tribometer o

m Measurement based on light
interference principle

chromium layer

m Unidirectional

driven shaft

start-stop-start motion pivot

m Important for study of
I'Ollil’lg contact fatigue and Ball-on-disk apparatus with interferometrym
wear

[2] D. Kostal et al, Journal of Tribology (2017)

Velocity

Lb Time

Unidirectional start-stop-start motion!!]

[1] P. Sperka et al, Journal of Tribology (2014)
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EHL film thickness erimental observation

2 02 ~ Measurement
=4
ol Simulation

1=40.7ms

1=1,=40.7ms

Film thickness (um) Film thickness (jum)

Left to right:
snapshots of interferograms, film thickness contour Midplane film thickness profiles along rolling
maps, results of numerical simulation!!! direction[!]

[1] P. Sperka et al, Journal of Tribology (2014)
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Lubrication regimes: Stribeck curve

e

A

Mixed (Partial) E (Elasto) Hydrodynamic lubrication
lubrication

Boundary
lubrication

Friction coefficient

Lubrication parameter, # U/P
(viscosity x velocity / normal load)

Adapted from www.wikipedia.org
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Boundary lubrication

m Asperities come in contact

® 1nm < g, <10nm

. L iR
m Bulk lubricant properties (i.e. LUULLLLLLLL LU LU LU LLALLLLLY

viscosity) are not important

m Physical and chemical properties of

the surface and of the fluid film are The frictional resistance is due to interaction
: between the outer surfaces of the adsorbed
lmportant monolayers without any solid contact
. . . ing (11
m Lubricant film of molecular size!'! occurting

[1] W.B. Hardy, (1936)

m Breakdown of lubricant film at
localized regions!?, frictional force:

F=A(as, + (1 —a)s)

the area that supports the load

a fraction of breakdown area

sm shear stress in solid contact Mechanism involving breakdown of the
lubricant film at small localized regions!?!

[2] EP. Bowden and D. Tabor, "The friction
and Lubrication of Solids" (1950)

s; shear stress in the lubricating film

Therefore, if a - const, then F o< A.
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Mixed (partial) lubrication

m Combination of boundary and
fluid film effects

m Some asperity contact

m Film layer of one or more
molecular layers

m Smooth transition

m 0.01 ym < hpip <1 um

Shvarts & Yastrebov 22/33



Lubrication: friction coefficient and wear

107
Unlubricated
1
- Seizure
=
Bound:
£ o' L Elasto- S
% hydrodynamic Severe wear
=]
S ]
= I
£ 107 s
= — =
3] 4
'LE ) . § Unlubricated
Hydrodynamic Hydrodynamic
10° ;- Elasto-
{ hydrodynamic
i Boundary
10 i

Regimes of lubrication Normal load
Bar diagram of friction coefficient for various
lubrication conditions
B.J. Hamrock, "Fundamental of fluid film
lubrication” (1991)

Wear rate for various lubrication regimes
Beerbower (1972)
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Lubrication: take home messages

m Lubrication: reduction of wear and friction between relatively moving
surfaces by adding lubricant

m Hydrodynamic: full separation of solids, thin fluid film lubrication
(Reynolds equation), dynamic viscosity is important

m EHL: solids deform elastically (hard - metals, soft - polymers), affected
by viscosity-pressure dependence

m Boundary: contact of asperities, but still thin molecular level of
lubricant, chemical properties important, breakdown of fluid film

m Mixed (partial): smooth transition

m Recommended literature:

B.J. Hamrock et al, "Fundamentals of fluid film lubrication" (2004)

F.P. Bowden and D. Tabor, "The friction and Lubrication of Solids
(1950)

D. Dowson, "Elastohydrodynamic and
micro-elastohydrodynamic lubrication”, Wear, 190 (1995)
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Sealing: what is it?

m Sealing: technique to prevent or
reduce leakage of fluid from one
chamber to another using seals

m Different types:
- face seals
- O-ring seals
- labyrinth seals

m Dynamic/static

. . 1
m Material: polymer/metallic Facesea

m Operate in
EHL/mixed/boundary regimes

O-ring

Shvarts & Yastrebov 25/33



Application: metal-to-metal static face seal

m Metal-to-metal static face seals
used in fluid system of nuclear
power plants

m Coting of the seal is made of ‘1 Z
material Norem!!!: elasto-plastic NN

Elastic moduli: D I . ‘
E=175GPa,v=0.3 ‘
Yield stress:
portée d'étanchéité
oy = Ro + Q(l - e—bp) Sketch of a valvelll
Ry = 442.7 MPa o
Q =493.5MPa 800

b=2422

J. Durand, PhD thesis (2012)

True stress (MPa)

100 M mental

esure experimentale
Modele numerique

0 0004 0008 0012 0016 0.02

True strain (mm/mm)
Material behavior of Norem!!]
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Problem statement
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Problem statement

27/33

Shvarts & Yastrebov



Problem statement

Rigid flat

external load
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Problem statement

/Youtlet

external load

H Surface discretization Total DOFs RAM  Cores Time H

256 x 256 1.4M 30Gb 8 2-4 days
512 x 512 57M 140 Gb 16 4-8 days
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Problem statement

®m Mechanical contact (unilateral):
V-o(u)=0 in ),
8w) 20, 0,(u) <0, gu) 0,(u) =0 atT,,

Ux|x:0’]t/2 = O, u]/ y=0,L = 0,

m Thin fluid flow with immobile walls (Reynolds equation):
V- [s@?vpe] =0 in T
Pl =P il = po
(Vpr-ed| .0 =0

m Fluid/structure interface:

on(u) = —ps atTy
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Results of the numerical simulation

z/A » ‘ z/A
Morphology of the contact Intensity of the fluid flux
interface
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Results of the numerical simulation

o
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z/A ‘ z/A
Morphology of the contact Intensity of the fluid flux
interface
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Results of the numerical simulation

"-"I (c" ’% *
08 5 i
P
wf o .
20
= ¥ [N %
& . e,
0zt %
@ .
3 $# Ao -;‘:-v
Morphology of the contact Intensity of the fluid flux
interface
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Results of the numerical simulation
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z/A
Morphology of the contact Intensity of the fluid flux
interface
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Results of the numerical simulation

z/A

Morphology of the contact Intensity of the fluid flux
interface
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Results of the numerical simulation

/A » ‘ /A

Distribution of the fluid pressure Distribution of the free volume
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Results of the numerical simulation

z/A ‘ /A

Distribution of the fluid pressure Distribution of the free volume
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Results of the numerical simulation

z/A » ‘ z/A

Distribution of the fluid pressure Distribution of the free volume
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Results of the numerical simulation

z/A » ‘ z/A

Distribution of the fluid pressure Distribution of the free volume
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Results of the numerical simulation

z/A » ‘ z/A

Distribution of the fluid pressure Distribution of the free volume
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Elastic solid
107,
10, rms of heights:
— 0.001
10°| °
\ . — 0.002

— 0.004

Effective transmisssivity

05 T 7 3 o7
Real contact area to apparent one, A/A,

Effective transmissivity of the interface
in case of elastic material
(loading until percolation)

Shvarts & Yastrebov

Transmissivity of the interface
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f the interface

Elastic solid Elasto-plastic solid
107, 107
100, rms of heights: rms of heights:
— 0.001 1o o001
.. — 0.002 — 0.002
— 0.004 10°| — 0.004

Effective transmisssivity

Percolation {{\

Effective transmisssivity

1022

05 T 7 3 o7
Real contact area to apparent one, A/A,

Effective transmissivity of the interface
in case of elastic material
(loading until percolation)

Shvarts & Yastrebov

u
05 mou 0.1 02 03 0.4 05 0.6

Real contact area to apparent one, A/A,

Effective transmissivity of the interface
in case of elasto-plastic material
(loading-unloading cycle)
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FE mesh
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FE Results

Accumulated plastic strain during loading
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FE Results

Accumulated plastic strain during loading
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FE Results

Accumulated plastic strain during loading
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FE Results

Accumulated plastic strain during loading
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FE Results

Accumulated plastic strain during unloading
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Fluid+solid FE Results

OUTLET

8
=
=
w
=
=
=
@

SYMMETRIC

Fluid flux itensity
S
00 02 04 06 08 10

Accumulated plastic strain
[
00 03 06 09 12 1518

(a)
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Fluid+solid FE Results

OUTLET

SYMMETRIC

51
I~
&
)
=
=
=
«

B
02 04 06 08 10

Accumulated plastic strain
W
00 0408 12 1.6 20 2428

(b)
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Fluid flux itensity

-
00 02 04 06 08 10

Accumulated plastic strain
— \ -
00 04 08 1.2 1.6 20 2428

(©)
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Fluid+solid FE Results

OUTLET

SYMMETRIC
SYMMETRIC

Fluid flux itensity

- e
00 02 04 06 08 10
Accumulated plastic strain y

[ .
00 05 10 15 20 25 30

(d
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Thank you for your attention!




