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1 Problem statement

In Fig. 1 an elastic half-plane, Young’s modulus E and Poisson’s ratio ν, is shown.
On its surface, a semi-circular groove of radius r is loaded by a distributed
pressure p(θ) = p0 cos(θ).

Problem: Find an induced stress state, deformation state and displacement
field. Obtain asymptotic results for r→ 0 assuming that the resulting vertical
force remains fixed.
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Figure 1: Elastic half-plane with a semi-circular groove on its surface subject to
a distributed pressure p(θ)

2 Stress tensor distribution

The stress state is given by the following tensor in polar coordinates

σ
=

= −
αcos(θ)

r

(
er⊗ er +νez⊗ ez

)
, (1)

where α = r0p0. The integral of the stress vector over the circular hole gives:

−

π/2∫
−π/2

σ
=
· err0dθ =

απ
2

ey = Fey, (2)
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then
α =

2F
π
, (3)

where F is the linear density of applied normal force.

3 Strain tensor distribution

The strain tensor is given by

ε
=

= −
αcos(θ)

rE

[
(1−ν2)er⊗ er−ν(1 +ν)eθ⊗ eθ

]
(4)

4 Displacement field

The radial displacement can be found by integrating εrr = ∂ur/∂r:

ur = −
αcos(θ)(1−ν2)

E
log(r) + f (θ), (5)

where f (θ) is an uknown function. The second displacement component uθ can
be found through the expression of εθθ = 1

r (∂uθ/∂θ+ur), which after integration
takes the form:

uθ = −
αsin(θ)ν(1 +ν)

E
+
αsin(θ)(1−ν2)

E
log(r)−

∫
f (θ)dθ+ g(r), (6)

where g(r) is another unknown function. So, we have two unknown functions
and will need at least two equations to identify them. The both can be obtained
from the fact that εrθ = 0, in polar coordinates it has a form:

εrθ =
1
2

[
1
r

(
∂ur

∂θ
−uθ

)
+
∂uθ
∂r

]
= 0, (7)

or equvalently for non-zero r

∂ur

∂θ
−uθ+ r

∂uθ
∂r

= 0. (8)

We substitute (5) and (6) in it and obtain:

∂ f (θ)
∂θ

+
αsin(θ)ν(1 +ν)

E
+

∫
f (θ)dθ− g(r)−

αsin(θ)(1−ν2)
E

+ r
∂g(r)
∂r

= 0. (9)

After grouping terms that depend solely on r and on θwe obtain the following
equality:

∂ f (θ)
∂θ

+

∫
f (θ)dθ−

αsin(θ)(1 +ν)(1−2ν)
E

= g(r)− r
∂g(r)
∂r

. (10)
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Thanks to this separation of variables, both the left and the right hand sides
should be equal to the same constant C, and we obtain two equations needed
to find f (θ) and g(r):

∂ f (θ)
∂θ

+

∫
f (θ)dθ−

αsin(θ)(1 +ν)(1−2ν)
E

= C

g(r)− r
∂g(r)
∂r

= C
(11)

We take the derivative of the first and obtain:

∂2 f (θ)
∂θ2 + f (θ) =

αcos(θ)(1 +ν)(1−2ν)
E

. (12)

The solution of the homogeneous (for zero right hand part) linear second-order
differential equation is given by:

f0(θ) = Acos(θ) + Bsin(θ), (13)

the particular solution we can seek in the form:

f∗(θ) = h(θ)sin(θ), (14)

which after its substitution in (12) gives:

∂2h
∂θ2 sin(θ) + 2

∂h
∂θ

cos(θ) =
αcos(θ)(1 +ν)(1−2ν)

E
, (15)

therefore
∂2h
∂θ2 = 0 and 2

∂h
∂θ

=
α(1 +ν)(1−2ν)

E
, (16)

since we have already Bsin(θ) in our solution of the homogeneous equation f0,
we keep only the linear term of function h(θ) = α(1 +ν)(1−2ν)θ/(2E):

f∗(θ) =
α(1 +ν)(1−2ν)

2E
θsin(θ). (17)

The full solution for f (θ) is then given by:

f (θ) = Acos(θ) + Bsin(θ) +
α(1 +ν)(1−2ν)

2E
θsin(θ) . (18)

For the function g(r), from Eq. (11) it immediately follows that

g(r) = Er + C. (19)

Finally, the displacements are given by:

ur = −
αcos(θ)(1−ν2)

E
log(r)+ Acos(θ) + Bsin(θ)︸                 ︷︷                 ︸

Rigid body displacement

+
α(1 +ν)(1−2ν)

2E
θsin(θ)

(20)
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uθ = −
αsin(θ)ν(1 +ν)

E
+
αsin(θ)(1−ν2)

E
log(r) −Asin(θ) + Bcos(θ)︸                   ︷︷                   ︸

Rigid body displacement

−
α(1 +ν)(1−2ν)

2E
sin(θ)+

+
α(1 +ν)(1−2ν)

2E
θcos(θ) + Er︸︷︷︸

Rigid body rotation

+C

(21)

If we remove rigid body motion, we obtain the following displacements on
the surface:

ux = −
F(1 +ν)(1−2ν)

2E
sign(x) (22)

uy =
2F(1−ν2)

πE
log(|x|) + C (23)

Note that ux = urer · ex for θ = ±π/2, and uy = uθeθ · ey for θ = ±π/2. We also
used the expression for α from Eq. (3).
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