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1 Normalization of the Navier-Stokes Equations

The Navier-Stokes equations for an incompressible fluid (∇ · v = 0) are written as

∂v

∂t
+ v · (∇v) +

1

ρ
∇p =

µ

ρ
∆v + f , (1)

where v = v(x, t) is the velocity vector field, ρ is the constant and uniform density, µ is the fluid
viscosity (Pa·s), and f is the body force density. By expressing v = uex + vey + wez, assuming
that body forces arise from gravity with gravitational acceleration g in an arbitrary direction,
and rewriting these equations component by component, we obtain :

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2)


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+

(
u
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∂x
+ v
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∂y
+ w

∂u

∂z

)
+

1

ρ

∂p

∂x
=
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ gαx,

∂v

∂t
+

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+

1

ρ

∂p

∂y
=
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ gαy,

∂w

∂t
+

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+

1

ρ

∂p

∂z
=
µ

ρ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ gαz,

(3)

with coefficients αi ∼ 1 such that α2
x + α2

y + α2
z = 1, determining the projection of gravitational

acceleration onto the OX,OY,OZ axes. These equations can be simplified in the case where
the fluid flow occurs in a thin layer of characteristic thickness h0 (in the OZ direction) and in
the XY plane over a characteristic distance L with h0 � L. Let us begin by introducing the
dimensionless variables for coordinates and velocities :

x′ =
x

L
, y′ =

y

L
, z′ =

z

h0
,

u′ =
u

U0
, v′ =

v

U0
, w′ =

w

V0
,

(4)

where U0 and V0 are characteristic velocities in the XY plane and in the V0 direction, respec-
tively. Logically, the characteristic velocity in the flow plane U0 should be greater than in the
thickness direction of the layer V0. To demonstrate this, we rewrite equation (2) using normali-
zed variables, obtaining :

U0

L

(
∂u′

∂x′
+
∂v′

∂y′

)
+
V0
h0

∂w′

∂z′
= 0. (5)

The derivatives of the normalized velocities with respect to the normalized coordinates vary
in the same way, thus giving equal weight to all components, it is necessary to demand that
U0/L ∼ V0/h0 ; we can therefore choose :

V0 = U0
h0
L
. (6)
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The characteristic time is associated with this ratio :

t0 =
L

U0
(7)

The pressure p and the time t will also be normalized :

p′ =
p

p0
, t′ =

t

t0
. (8)

By substituting all variables into equations (3) we obtain :
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∂x′
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∂x′2
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∂2u′
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∂y′
+w′ ∂v

′

∂z′
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∂y′
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∂2v′
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∂x′2
+
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∂y′2

)
+
µU0

Lh0ρ

∂2w′

∂z′2
+gαz,

(9)

Equation in the "plane" : By multiplying the first two equations of (9) by ρh20/(µU0), we obtain :
ρh20
µt0

∂u′

∂t′
+
ρh20U0

µL

(
u′
∂u′

∂x′
+v′

∂u′

∂y′
+w′ ∂u

′

∂z′

)
+
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µU0L

∂p′

∂x′
=
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L2
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∂2u′

∂x′2
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∂y′2

)
+
∂2u′

∂z′2
+
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αx,

ρh20
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∂v′

∂t′
+
ρh20U0

µL
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∂v′

∂x′
+v′

∂v′

∂y′
+w′ ∂v

′

∂z′

)
+
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∂p′

∂y′
=
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+
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)
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∂z′2
+
ρh20g

µU0
αy

(10)
To retain the term containing the pressure gradient, the reference pressure should be chosen
such that h20p0 ∼ µU0L, i.e.,

p0 =
µU0L

h20
. (11)

At the same time, we replace t0 with L/U0 and introduce the small parameter ε = h0/L � 1,
obtaining :

ε2
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µ
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∂u′

∂t′
+u′
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µ
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U2
0

αx,
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µ
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∂v′

∂t′
+u′

∂v′

∂x′
+v′

∂v′

∂y′
+w′ ∂v

′

∂z′

)
+
∂p′

∂y′
= ε2

(
∂2v′

∂x′2
+
∂2v′

∂y′2

)
+
∂2v′

∂z′2
+ε2

ρU0L

µ

Lg

U2
0

αy,

(12)
The dimensionless factor preceding the acceleration is called the Reynolds number :

Re =
ρU0L

µ
, (13)

which represents the ratio of inertia to viscosity.
The two factors in front of the body force direction include the Reynolds number and ano-

ther dimensionless number called the Froude number, given by :

Fr =
U2
0

Lg
(14)

which characterizes the ratio between kinetic energy and potential energy due to gravity.
Taking all these numbers into account, we obtain the final equation in the XY plane :
ε2Re

(
∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
+ w′ ∂u

′

∂z′

)
+
∂p′

∂x′
= ε2

(
∂2u′

∂x′2
+
∂2u′

∂y′2

)
+
∂2u′

∂z′2
+ ε2

Re

Fr
αx,

ε2Re

(
∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
+ w′ ∂v

′

∂z′

)
+
∂p′

∂y′
= ε2

(
∂2v′

∂x′2
+
∂2v′

∂y′2

)
+
∂2v′

∂z′2
+ ε2

Re

Fr
αy,

(15)
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For the case where the Reynolds number remains small such that ε2Re � 1, and if the gravita-
tional contribution remains of order one, 1/Fr ∼ 1 (since this term is multiplied by ε2Re), then
for ε→ 0, the equations (15) reduce to terms that do not contain ε :

∂p′

∂x′
=
∂2u′

∂z′2
,

∂p′

∂y′
=
∂2v′

∂z′2
,

(16)

Equation in the thickness : Taking into account all the normalizations mentioned above, the
third equation of (9) becomes :

U2
0h0
L2

∂w′

∂t′
+
U2
0h0
L2

(
u′
∂w′

∂x′
+v′

∂w′

∂y′
+w′ ∂w

′

∂z′

)
+
µU0L

h30ρ

∂p′

∂z′
=
µU0h0
L3ρ

(
∂2w′

∂x′2
+
∂2w′

∂y′2

)
+
µU0

Lh0ρ

∂2w′

∂z′2
+gαz

(17)
Focusing on the pressure gradient ∂p′/∂z′, we multiply everything by h30ρ/(µU0L), obtaining the
final equation in the thickness direction OZ :

ε4Re

(
∂w

∂t
+ u′

∂w′

∂x′
+ v′

∂w′

∂y′
+ w′ ∂w

′

∂z′

)
+
∂p′

∂z′
= ε4

(
∂2w′

∂x′2
+
∂2w′

∂y′2

)
+ ε2

∂2w′

∂z′2
+ ε3

Re

Fr
αz (18)

It can be observed that, under the previously introduced assumptions that ε2Re� 1 and 1/Fr ∼
1 or larger, there is only one term that is not multiplied by the small parameter ε :

∂p′

∂z′
= 0. (19)

It follows that the pressure remains uniform in the thickness. However, if the term related to
gravity remains significant, the pressure will be an affine function of the coordinate z :

∂p′

∂z′
= ε3

Re

Fr
αz ⇒ p′ = ε3αz

Re

Fr
z′ ⇔ p = p0 + ρgαzz (20)

v0

v(x,y,z)
z1

p(x,y)

v1

z0

FIGURE 1 – Fluid flow between two walls.

2 Reynolds Equation for Thin-Film Flow

Since the pressure does not depend on the coordinate z (cf. (19)), equations (21) are easily
integrated to show that :

u′ =
z′2

2

∂p′

∂x′
+ fu(x′, y′, t′)z′ + gu(x′, y′, t′),

v′ =
z′2

2

∂p′

∂y′
+ fv(x′, y′, t′)z′ + gv(x′, y′, t′),

(21)

For thin-film flow bounded by two surfaces z0(x, y) ≤ z ≤ z1(x, y) (cf. Fig. 1), the boundary
conditions that determine the functions fu, gu, fv, gv may vary :

1. Free surface (absence of shear stress) at z′ = z′0(x′, y′) or z′ = z′1(x′, y′) :
∂u′

∂z′
=
∂v′

∂z′
= 0
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2. Adherence to a wall at z′ = z′0(x′, y′) or z′ = z′1(x′, y′) : u′(z′0, z
′
1) = U ′ and v′(z′0, z

′
1) = V ′,

where {U ′, V ′} are the components of the normalized velocity of the corresponding wall.

Regardless of the boundary conditions, it can be observed in (21) that the velocity in the thick-
ness direction is described by a second-order polynomial. Note that this remains true even if
the last term containing the Froude number Fr is not neglected.

Let us consider the case of flow between two rigid walls z′0 = 0 and z′1 = h′(x, y, t) > 0, where
h′ = h/h0 and h(x, y) is the film thickness. The walls are thus separated on average by h0 and
move at velocities v′

0 = u′0ex + v′0ey and v′
1 = u′1ex + v′1ey, respectively.

Formulated in this way, the resulting equations are used to describe lubrication, flow in frac-
tured media (rocks), and sealing systems.

From equation (21) with pure adhesion conditions, we obtain u′(0) = u′0, so gu = u′0, and
v′(0) = v′0, so gv = v′0.

For u′(h′) = u′1 and v′(h′) = v′1, we obtain fu = (u′1 − u′0)/h′ − 0.5h′∂p′/∂x′ and fv = (v′1 −
v′0)/h′ − 0.5h′∂p′/∂y′.

Finally, the fluid velocity between the two walls is given by :

v′(z) =
z′

2
(z′ − h′)∇′p′ +

z′

h′
(v′

1 − v′
0) + v0, (22)

where∇′ = ∂/∂x′ex + ∂/∂y′ey. Integrating this velocity over the thickness, we obtain the com-
ponents of the flux q′ = q′xex + q′yey :

q′x =

z′
1∫

z′
0

u(z′)dz = −h
′3

12

∂p′

∂x′
+
h′

2
(u′1 + u′0),

q′y =

z′
1∫

z′
0

v(z′)dz = −h
′3

12

∂p′

∂y′
+
h′

2
(v′1 + v′0)

(23)

where we used the fact that z′0 = 0 and z′1 = h′. Thus, the flux vector is given by :

q = −h
′3

12
∇′p′ +

h′

2
(v0 + v1) (24)

Mass conservation implies that the divergence of the flux∇ · q must be balanced by the change
in volume (height) ∂h/∂t, i.e.,

∂h′

∂t′
+∇′ · q′ = 0. (25)

To explicitly express the first term, we start from the time derivative of the height :

dh′

dt′
= w′

1 − w′
0 =

∂h′

∂t′
+ (u′1 + u′0)

∂h′

∂x′
+ (v′1 + v′0)

∂h′

∂y′
, (26)

where w′
1 −w′

0 is the relative velocity in the thickness direction between the two walls. Thus, we
obtain the partial time derivative :

∂h′

∂t′
= w′

1 − w′
0 − (v′

1 + v′
0) · ∇′h (27)

Substituting equations (23) and (27) into (25), we obtain the normalized Reynolds equation for
an incompressible fluid :

∇′ ·
(
h′3

12
∇′p′

)
= w′

1 − w′
0 −

1

2
(v′

1 + v′
0) · ∇′h′. (28)

Note that this is an equation for a scalar pressure field to be determined in the "flow" plane,
p′(x′, y′). The velocity field is fully defined by the pressure gradient and the velocity of the
walls (22). By removing the normalization : ∇′ = L∇, h′ = h/h0, v′ = v/U0, w′ = wL/(U0h0),
p′ = ph20/(µU0L), we obtain the classical Reynolds equation for an incompressible fluid with
viscosity µ :

∇ ·
(
h3

12µ
∇p
)

= w1 − w0 −
1

2
(v1 + v0) · ∇h. (29)
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