
3

Numerical Methods
in Micromechanical Contact

Vladislav A. YASTREBOV

CNRS, Mines Paris PSL, France

3.1. Introduction

Mechanical contact and all associated mechanisms such as friction, wear,
adhesion and mixed lubrication regimes represent critical mechanisms in many
natural (such as small animal legs, joints, glaciers and faults) and industrial systems
(tires/pavement, gears, bearings and piston/cylinder, for example). Very often, in the
analysis of these systems, it is assumed that contact surfaces have nominal shapes
smooth almost everywhere. However, in reality, all real surfaces, especially those
found in nature, exhibit much more complex shapes than their nominal forms:
in other words, we can say that these surfaces are rough. This roughness influences
almost all interfacing phenomena (Bowden and Tabor 1986; Vakis et al. 2018): the
stress state near the contact, the contact interface stiffness, wear, friction, adhesion,
heat and electrical transfer as well as watertightness are all affected by the roughness
of the surfaces in contact. In most cases, at the macroscopic scale (the scale of
the nominal contact area and structure), the effect of roughness can be taken into
account by phenomenological laws or those based on microscopic considerations
(Greenwood 1966; Cooper et al. 1969; Zavarise et al. 1992), including Archard’s law
of wear (Archard and Hirst 1956), Coulomb’s law of friction as well as other laws
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such as “rate and state” friction (Rice and Tse 1986; Dieterich 1992; Dieterich and
Kilgore 1994; Rice 2006). However, micromechanical models used in the past were
based on fairly simplistic roughness and mechanical behavior models. Often, these
limitations came from the need to make strong enough assumptions to obtain results
because the contact problem formulated for complex geometry cannot be solved
analytically due to its high nonlinearity. Now, considering advanced numerical
methods and today’s computing power, a large field of applications in
micromechanical contact is becoming highly accessible to researchers and engineers.
This chapter discusses advances in numerical methods and our increasing
understanding of small-scale contact physics.

3.1.1. Plan

This chapter is organized as follows. First, the contact problem and its
micromechanical nature are presented in section 3.2. The finite element method
(FEM) is briefly discussed in section 3.3 with emphasis on features relevant to
small-scale contact. The boundary element method is not presented in detail in this
chapter, so an interested reader should refer to a recent review by Bemporad and
Paggi (2015). Nevertheless, many applications of this method to small-scale contact
problems are presented. Two main applications of micromechanical contact: the
contact between rough edges and contact between rough surfaces are covered in
sections 3.4 and 3.5, respectively. Some problems for the future are formulated in
section 3.6.

3.2. Contact micromechanical problem

3.2.1. Surface geometry: mathematical description

In this section, we formulate the micromechanical problem of contact. This will
form the subject of the following sections. We consider the contact between two
simply related bodies1 (open sets Ω1(t),Ω2(t)) with one or more surfaces exhibiting
“roughness”2. The configuration is defined at each time t, in the following this
explicit notation of this time dependency will be omitted. The mechanical behavior
of materials (homogeneous or heterogeneous) can be linear or nonlinear, while the
contact model can be considered without or with friction/adhesion. In the general
case, in the initial state, the two potential contact surfaces are described by vectors:

1 The simple connectedness condition of bodies in contact makes it possible to somewhat
simplify the mathematical formulation, especially in terms of the application of parametric
space in physical space.
2 “Roughness” refers here to any surface shape.
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{

r1(ξ1, η1) ∈ ∂Ω1

r2(ξ2, η2) ∈ ∂Ω2
r1, r2 ∈ R

3

where ∂Ωi defines the closure of the set, r1, r2 are at least surjective mappings3

of parameters {ξi, ηi} ∈ X i ⊂ R
2, i = 1, 2 in two-surfaces ∂Ωi emerged in the

three-dimensional physical space R
3:

ri : X i ⊂ R
2 → ∂Ωi ⊂ R

3

The mapping ri is continuous. Let us assume that X i is simply connected and
convex. Hereafter, we merely consider the problem of three-dimensional contact; the
indexes 1, 2 in superscript denote both surfaces. In principle, the formulation can be
adapted to self-contact problems, where different parts of the same surface come into
contact.

Contact can be achieved by way of different types of loading (mechanical,
thermal, magnetic). This formulation of the contact problem is rather general and can
be adapted to macroscopic and microscopic contact. However, we will consider that
the geometry of both surfaces is very complex, unlike most macroscopic applications
where the surfaces studied remain quite simple.

Figure 3.1. Contact problem between two bodies on the surface: (a) the macroscopic

scale; (b) magnification of surfaces parts potentially in contact (parameterization is

indicated); (c) example of the non-simplifiable contact problem; (d) example of surfaces

that allow an explicit representation at the given time

Let us introduce the contact area C (with no self-contact) in the current
configuration as a set of points rc such that:

C =
{

rc ∈ R
3

∣

∣ ∃r1 ∈ ∂Ω1, r2 ∈ ∂Ω2 : rc = r1 = r2
}

3 When there is no self-contact, these maps can be considered to be bijective.
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Its images are denoted as:

ri : Ci ⊂ X → C ⊂ ∂Ωi

Let the set C̃i ⊃ C
i also be introduced, such that C̃i is a simply connected and

convex two-manifold of minimal size4. It should be noted that the sets C and C are not
necessarily connected sets, nor are they manifolds, and are not necessarily compact
either. So that geometric quantities of different sizes can be compared, we define the
linear size T (•) of an entity A:

T (A) = max
r,r′∈A

‖r − r′‖

where ‖a‖ defines a vector Euclidean norm. Let Ci
0 denote the maximal extension of

the contact area in the parametric space C
i
0 ⊂ X i, that is, ∀t : C(t) ⊆ C

i
0 ⊆ X i.

Naturally, Ci
0 is problem dependent and cannot always be guessed.

The surface has an explicit form in the area of interest. If at every time instant t ∈ T
there exists an orthonormed basis ex, ey, ez ∈ R

3, eα · eβ = δαβ , α, β ∈ {x, y, z}
such that the surfaces in which the potential contact is located can be represented as
functions zi(x, y), where zi = ri · ez , x = ri · ex, y = ri · ey:

∀t ∈ T , ∃ex, ey, ez ∈ R
3 s.t. ∀ri(C̃i

0
) : ∃! zi(x, y) s.t. ri = ezz

i(x, y) + exx+ eyy

where C̃i
0 ⊃ C

i
0 is, as introduced earlier, a simply connected and convex two-manifold

of minimal size that includes Ci
0. More broadly, we will allow ourselves to work with

surfaces that have a semi-explicit representation, which will be defined below. First, let
the set X ∈ R

2 be defined such that it consists of all points: {ri(C̃i
0
) ·ex, ri(C̃i

0
) ·ey}.

A semi-explicit surface is defined as a surface for which the set of points {x, y} ∈
Xn ⊂ X for which zi(x, y) is not always unique and of zero measure. If the two
surfaces do not have an explicit or semi-explicit shape as defined previously in the
neighborhood of the potential contact area, the associated contact problem will be
referred to as unsimplifiable. An example of a unsimplifiable problem is shown in
Figure 3.1(c).

From this very general formulation, we could propose some particularly
appealing sub-cases. When the linear dimension of the contact area is very small
compared to the size of the bodies in contact T (C) ≪ T (Ω1), T (Ω2) and if we are

4 The convexity condition of X i that was requested earlier comes from the need to ensure that:
C̃
i ⊂ X i.
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exclusively focusing on the state of strain and stress in the contact area, fields can be
thought to be semi-infinite (see, for example, the theory of Hertz (1881)). If also,
there is in the area of interest an existing explicit representation of the surfaces, and
the maximum gradient is infinitesimal, that is, max |∇z(x, y)| ≪ 1, fundamental
Boussinesq, Cerutti and Flamant solutions can be used. It is important to emphasize
that these solutions are not usable when a deformable surface does not have an
explicit representation in the vicinity of the contact zone.

3.2.2. Surface geometry: examples and discussions

“Roughness”, or more generally the geometry, of natural and industrial surfaces,
can take very varied forms. In Figure 3.2, some pictures of the various surfaces are
assembled: (a) beach wrinkles formed by the interaction of sand particles with wind
or current; (b) pebbles of different sizes; (c) the granite fracture surface; (d) the texture
of a painted wall; (e) the creep fracture surface of a titanium superalloy; (f) “elephant
skin” on rocks in the forest of Fontainebleau; (g) the surface of the sea; (h) the surface
of a fibrous material; (i) peeling paint; (j) pebble pavement; (k) dry soil; (l) asphalt;
(m) bark; (n) finger skin; (o) drops of water on car paint; and (p) the fracture surface
(lower part) on a rock in the forest of Fontainebleau. The geometries presented here
are all complex and show a random character. However, except for examples (c) and
(g), the surface geometries in the pictures rather represents the mesoscopic scale which
additionally contains a small-scale roughness, which will be discussed in a little more
detail in section 3.2.3.

In addition, this geometry can be considered resolution dependent. This assertion
is all the more true because at the atomic scale matter has no continuity, the latter
is only a model. Nonetheless, this is a model that remains valid from the nanoscale
and the one that will be employed in the context of this presentation. But even at the
validity scales of the continuous medium model, surface geometry can be described at
different levels of accuracy. Consider an example of a beach wrinkle (see Figure 3.2(a)
where a “continuous” shape, which is nevertheless made up of sand particles which
form at their scale a very complex “surface”, similar to that of Figure 3.2(b) can be
distinguished. In addition, the surface of the sand particles is also rough as in Figure
3.2(c). For this example, at least three scales can be distinguished: wrinkle, particles
and roughness. Clearly, these three scales cannot be simultaneously treated in order
to understand the interaction of the wheels of a rover on Mars with the ground of
the Red Planet. Besides the difference in the scales of shape and roughness, there are
many examples of surface geometries that distinguish different scales: turned surfaces,
abrasion-polished surfaces and architected surfaces (Yoon et al. 2006; Autumn 2007;
Costa and Hutchings 2007). We can note that although these scales are quite distinct
at first glance, in some cases there is no separation between these scales in terms of
mechanics (Greenwood and Tripp 1967; Yastrebov 2019).
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Figure 3.2. Different geometries of natural surfaces
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Often, in contact problems, only the “shape” of the parts, as it was designed, is
taken into consideration, but inevitably this shape hides aspects of the roughness that
is the subject of this section. Form can often be defined as deterministic, especially in
engineering applications while roughness is stochastic and random. However, it can
also be addressed deterministically. Otherwise, the aspect of roughness can be taken
into account by means of phenomenological relations that can be obtained, among
other things, by deterministic calculations of the contact of rough surfaces or through
statistical models.

3.2.3. Roughness models

The objective here is not to present in detail all aspects of rough surfaces; all
of this information can be found in engineering (Thomas 1999; Whitehouse 2010),
mathematical (Adler and Taylor 2009) or physics texts (Mandelbrot 1983; Meakin
1998). Nevertheless, it would be important to propose some references on modeling
the geometry of rough surfaces. First, a model for a rough surface can be obtained
by direct surface measurements, but since the resolution of all instruments is limited,
the reconstruction of a final surface can be considered as modeling. In addition to
direct measurements, different methods for modeling rough surfaces can be found.
Often, these are methods that are based on a fractal characteristic of most natural and
industrial surfaces (Russ 1994; Renard et al. 2013). A good review of these methods
for addressing the mechanics of contact of rough surfaces was given in Zahouani
et al. (1998). The simplest method is the mid-point random displacement (Russ 1994;
Meakin 1998) which, in a hierarchical way, subdivides the grid of points at each
iteration (a segment in two, a face in four) and in doing so, it disturbs the vertical
coordinate of each new point in a random manner. To reach the fractal aspect, the
standard deviation of these perturbations decreases with each new iteration. The rate
of this decay depends on the fractal dimension of the modeled surface. On the other
hand, the resulting surface requires smoothing (interpolation) in order to obtain a
well-posed mechanical problem, that is, a problem for which mesh refinement leads
to the convergence of the numerical solution. Another fairly common method makes
use of the Weierstrass–Mandelbrot function generalized to problems with 2D surfaces
by Majumdar and Tien (1990). This method does however not easily obtain isotropic
surfaces (Zahouani et al. 1998). A powerful and flexible method is the spectral filtering
method for white noise (Hu and Tonder 1992), which makes it possible to reproduce
on average a self-affining spectrum with a defined Hurst exponent while presenting
a certain level of stochasticity. In addition, this filtering can be used to introduce
low- and high-frequency cuts, which results in obtaining smooth surfaces at the scale
of discretization and the Gaussian distribution of heights (Yastrebov et al. 2015).
Recently, a method for modeling surfaces with controlled height distribution was
proposed in Pérez-Ràfols and Almqvist (2019).
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3.2.4. Contact formalization

In this section, we will formalize contact conditions which can be summarized
(with no friction and adhesion) by the following three conditions:

1) No penetration, that is, no intersection between solids Ω1 ∩ Ω2 = ∅.

2) No adhesion n · σ · n ≤ 0, that is, the normal stress is not positive.

3) No shear at the contact interface, that is, the tangential component cancels out
(I−n⊗n) ·σ = 0, where σ is the Cauchy stress tensor, n is the outgoing normal and
I is an identity tensor. Condition (1) can be reformulated as a kinematic inequality as
follows: none of the points of a surface ∂Ω1 can penetrate the volume Ω2, nor can
penetrate under the surface ∂Ω2, which should therefore be orientable. The surface
indexes 1 and 2 are arbitrary and can be exchanged. This condition can be reformulated
even more easily as a relation between each surface point and the nearest points rp of
another surface:

∀r1 ∈ ∂Ω1, ∃r2p ∈ ∂Ω2 s.t. ∀r2 ∈ ∂Ω2, ‖r1 − r2p‖ ≤ ‖r1 − r2‖ [3.1]

Moreover, if the surface ∂Ω2 is sufficiently smooth, it can be said that for these
points:

(r1 − r2p) · n(r2p) ≥ 0

where n(r2p) is the outgoing normal in the current configuration of point r2p. If the
surface, here ∂Ω2, is C1-smooth, a normal vector can be uniquely defined at each
point as:

n(r2) =

∂r2

∂ξ2 × ∂r2

∂η2

∥

∥

∥

∂r2

∂ξ2 × ∂r2

∂η2

∥

∥

∥

The parameterization of the surface ξ2, η2 must actually be chosen in such a way
that the normal thus defined be outgoing. If these partial derivatives do not exist, the
normal vector n cannot be uniquely defined. On the other hand, its derivatives can be
defined using the notions of subdifferentials, and then defined as follows: the normal
should be regarded as the set of normal vectors originating from the subdifferential
of the surface at the point of interest (Moreau 1966; Heegaard and Curnier 1996;
Pietrzak 1997; Yastrebov 2013). To simplify equation [3.1], the following notation is
introduced:

gn = gn(r
1, ∂Ω2) = (r1 − r2p) · n(r2p) [3.2]
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where gn is called the normal gap, whose absolute value defines the minimal distance
between the point r1 and the surface ∂Ω2 if the latter is at least C1-smooth (at least
locally). The sign of gn determines whether there is local penetration (gn < 0) or
separation (gn > 0). We should bear in mind that in the general case, gn(r1, ∂Ω2) is
not necessarily equal to gn(r

2
p, ∂Ω

2), where r2p is the closest point to r1 even if ∂Ω1

is C1-smooth. With the definition of the normal gap, the contact conditions can be
formulated as follows:

gn ≥ 0, σn ≤ 0, gnσn = 0 [3.3]

where σn = n · σ · n is the normal contact stress or the contact pressure negative
σn = −p. Conditions [3.3] are called Hertz–Signorini–Moreau conditions (Wriggers
2006) or KKT (Karush–Kuhn–Tucker) in the convex analysis literature.

To give an example, consider a contact problem between a rough surface ∂Ω1

defined by z(t, x, y) and an elastic half-space Ω2 with the boundary z = 0. With no
deformation, at each time instant, the gap is gn(r

1, ∂Ω2) = z(t, x, y). However, in
the current configuration, the gap is more complex because of the deformation of the
half-space. It should be noted here, in the case considered and of a surface z(x, y)
nominally flat, that is, for any surface S ⊂ R

2 large enough 〈z〉 = 0, that when there
are no external forces, ∀δ < ∞ : z(t, x, y) = z(x, y)− δ(t), the contact area remains
zero.

This conclusion, which may seem surprising at first glance, is related to the
Cheseaux–Olbers paradox (Harrison 1990): nonzero contact forces distributed over
the surface of the elastic half-space with nonzero density create a nonzero average
pressure over the entire infinite surface that results in infinite vertical displacement.
Hence, if the displacement is finite δ < ∞, the average pressure must be zero, so are
the forces and the area of contact. A cleaner formulation would be to fix the rough
surface z(t, x, y) = z(x, y) and apply external pressure at infinity −σzz = p0. In this
example, the fraction of the contact area will be nonzero, regardless of the pressure
applied.

NOTE.– The conditions [3.3] are strictly valid if and only if there is no fluid
around the solids in contact. In real-life situations, a nonzero pressure fluid often
surrounds bodies. To this end, to establish contact, the contact pressure must be
greater than the fluid pressure everywhere at the edge of the contact zones
∀r ∈ ∂C : σn ≤ −pf , where pf is the local fluid pressure. This correction is
particularly relevant when contact pressure is comparable to fluid pressure (Shvarts
and Yastrebov 2018a, 2018b).
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NOTE.– At the macroscopic scale, it is sometimes assumed that the contact
interface has a certain stiffness (Shi and Polycarpou 2005; Campañá et al. 2011;
Pohrt and Popov 2012). This additional stiffness originates from the deformation of
the roughness of both surfaces. At the macroscopic scale, if the surfaces are
considered as averaged surfaces of the real surfaces (when there are no fine
details), the actual contact can be established at a nonzero distance between
averaged surfaces. On the other hand, the complementary stiffness must become
infinite when the contact surface saturates and when in the contact area, the real
contact area is equal to the contact area between average surfaces. This
consideration justified the use of a barrier method with nonlinear parameters that
captured the evolution of contact stiffness. Alternatively, a penalty method can be
used to capture this complementary contact stiffness (Wriggers and Zavarise 1993;
Andersson and Kropp 2008). However, in this case, the geometry of the surfaces
should not be the average line of the actual surfaces but rather the surface that
contains them and that exhibits the highest roughnesses. These techniques will not
be physically justified in the context of small-scale contact because it is assumed
that there is no longer any underlying roughness.

3.2.5. Laws of friction

There is a wide variety of friction laws which in their majority are nevertheless
only relevant at the macroscopic scale. For example, Coulomb’s law of friction
according to which the tangential force T cannot exceed a threshold proportional to
the normal force N , that is, ‖T ‖ ≤ µ‖N‖, can be considered as the consequence of
the linear evolution of the local real contact area with the pressure a ∼ p. According
to the adhesive theory of contact (Rabinowicz 1965; Bowden and Tabor 1986;
Straffelini 2001), the maximal resistance of asperities in contact to shear is given by a
constant τc, then the maximal tangential force T ≤

∫

aτcdA ∼
∫

pτcdA = ‖N‖τc.
In sliding, in addition to dissipative losses on the surface, there exists dissipation
present in the volume as it occurs with elastomers with viscoelastic behavior, metals
with visco-elastoplastic behavior or the dissipation can originate from the formation
of damage in any materials (micro cracks). At the macroscopic level, all of these
energy losses are included in the law of friction. In addition, the heat produced near
the contact interface alters the behavior of the material (thermal conductivity,
Young’s modulus, etc.) and can even cause phase change (glass transition,
austenitization, melting, evaporation, etc.). All of these microscopic phenomena give
rise to macroscopic friction laws (Vakis et al. 2018), which can be used for complex
systems. The use of these laws at the roughness scale is confusing and cannot
properly reproduce macroscopic friction laws. For this purpose, at the roughness
scale, it is relevant to use Tresca-type friction laws, in other words, laws that assume
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that the local tangential resistance does not depend on the local pressure (Krim 1996,
2002; Mo et al. 2009) and which can be formulated as follows:

{

‖vt‖ = 0, if ‖σt‖ < τc adhesion

‖vt‖ > 0, if ‖σt‖ = τc sliding
[3.4]

where vt is the tangential sliding speed, and σt = (I − n⊗ n) ·σ is the stress vector
stripped of its normal component, that is, the stress vector in the tangent plane. To
enhance the friction model, the dependency of the temperature and velocity threshold
τc can be considered originating from the atomic scale (Gnecco et al. 2000; Gnecco
and Meyer 2015):

τc(T, vt) = τ0c + αT log(vt/v0)

where α [Pa K−1] is a constant related to the atomic structure and v0 a normalization
rate. However, at high speeds, thermal activation should no longer be significant and
resistance should saturate. In the interval of these velocities, the following law can be
used (Sang et al. 2001):

τc(T, vt) =

{

τec − αT 2/3 log(βT/vt)
2/3, si vt < βT

τec , if vt ≥ βT

where α [Pa K−2/3] and β [m s−1 K−1] are constants related to materials in contact.

The KKT conditions can thus be formulated as follows:

‖vt‖ ≥ 0, ‖σt‖ − τc ≤ 0, (‖σt‖ − τc) ‖vt‖ = 0 [3.5]

Unlike Coulomb’s law, this friction law is associative, which greatly simplifies
how associated friction contact problems are addressed (Michalowski and Mróz
1978; Curnier 1984) because there is no coupling between contact pressure and
shear. In addition, in the more general framework, Coulomb friction can be
approximated by “fixed point”-based methods that make use of the Tresca law at
each iteration (Panagiotopoulos 1975; Gwinner 2013).

NOTE.– Similarly to the way how penalization methods and barriers lose their
physical motivation in the framework of small-scale normal contact of roughness,
the same thing happens when addressing friction with the penalizationmethod,
which should be avoided or utilized with particular caution, since there is no
physical basis.

Copyright ISTE 2025 / File for personal use of Vadislav A. Yastrebov only



90 Numerical Methods for Strong Nonlinearities in Mechanics

3.3. Finite element method

The FEM is a powerful and versatile tool for solving various problems in
mechanics and physics (Bathe 1996; Zienkiewicz and Taylor 2000a, 2000b).
However, contact remains a particular problem for this method because it requires the
description of interaction between solids that each have their own discretization into
finite elements. In the general case where the original surfaces are not geometrically
compatible and/or their discretizations are not compatible either, processing contact
remained a sensitive issue until recently. In this section, we will consider some
questions of general interest in order to apply the FEM to micromechanical contact
problems. All implementation details of contact algorithms can be found in the
following monographs and doctoral theses: Kikuchi and Oden (1988); Pietrzak
(1997); Laursen (2002); Wriggers (2006); Konyukhov and Schweizerhof (2012);
Popp (2012); Yastrebov (2013); Akula (2019); Shvarts (2019).

Before covering the particularities of using FEM with microcontacts, we recall the
basics of this method and its utilization for contact. The FEM is based on the principle
of virtual works which, when there is no contact and in the infinitesimal context, can
be described in the following form5:

∫

Ω

σ : δεdV =

∫

Ω

ρ(b− ü) · δudV +

∫

Γf

t0 · δu dS [3.6]

where δu denotes virtual displacements (or test displacements) that cancel out at the
edges where Dirichlet conditions are prescribed Γu, that is, δu = 0 on Γu, b are
density forces, ü is an acceleration vector, ρ is the density and t0 is the surface
intensity of the prescribed forces on the Neumann surface Γf . The displacement u
must verify the Dirichlet conditions u = u0 on Γu and be in a functional space such
that integrals in [3.6] make sense; this also applies to virtual displacements.

The introduction of contact constraints transforms the variational equality [3.6]
into a variational inequality:

∫

Ω

σ : δεdV +

∫

Γc

σt · δgtdS ≥
∫

Ω

ρ(b− ü) · δudV +

∫

Γf

t0 · δu dS [3.7]

5 This form is called the weak form in contrast to the strong form because the former is obtained
by the integration of the strong form, which allows, among other things, the conditions on the
regularity of the solution to be weakened.
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with the dissipation term put in the second integral evaluated on one side of the contact
surface which remains unknown. At the same time, the solution u and the virtual
displacement δu must verify the contact conditions gn(u) ≥ 0 and gn(u+ δu) ≥ 0.
For friction laws relative to small scales [3.4], the friction dissipation integral can be
reformulated as:

∫

Γc

σt · δgtdS =

∫

Γsl

τc‖δgt‖dS

where Γsl determines the sliding area in which ‖σt‖ = τc. This form of the dissipative
term preserves non-differentiability (Duvaut and Lions 1972; Kikuchi and Oden 1988)
but eliminates the dependency of pressure.

In order to address the contact problem, inequality [3.7] (which can be thought of
as a constraint optimization problem) can be transformed into an unconstrained
optimization problem by means of classical methods such as the penalty method, the
barrier method, the Lagrange multiplier method, the augmented Lagrangian method
or using other optimization methods (Bertsekas et al. 2003). These methods can be
used to remove the contact constraints imposed on the choice of real and virtual
displacements and bring them back into the functional itself. After discretization
of the continuous finite element formulation, a system of nonlinear equations is
obtained that is generally solved using the Newton method in the implicit
formulation of finite elements. This procedure naturally requires the linearization of
the weak form (to obtain the tangent matrix), which is cumbersome in terms of
implementation in the general case (Pietrzak 1997; Popp 2012; Yastrebov 2013).
However, automatic bypass methods can lead to simplifying this procedure (Korelc
1997; Wriggers 2008; Lengiewicz et al. 2011).

Before moving on to the discussion of the applications of the FEM to small-scale
contact problems, it would be important to make a few observations about the method
itself.

3.3.1. Convergence, parameters and loading step

The convergence of the Newton iterations in contact problems cannot always be
ensured for the given change of boundary conditions. However, the user can define
control parameters such as the penalty coefficient(s) or the increase coefficient(s) in
the augmented Lagrangian method. It is preferable that these parameters are defined
independently for normal contact and tangential contact. In addition, it is also
preferable that these parameters be independently defined for each localization, that
is, for each contact element because these parameters are related to the local
structural stiffness which is not uniform and which changes to nonlinear material
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models. It is known that for the penalty method, the solution can be greatly impacted
by to the choice of the penalty parameter.

It is therefore good practice to redo each calculation with the penalty twice as
high, for example, which will make it possible to validate the solution. The practice of
“naked eye” penetration control, in general, is never conclusive. The low penalization
value often gives inaccurate results but ensures fairly rapid and robust convergence.

On the other hand, the high value of the penalization deteriorates the number of
conditioning of the tangent matrix, which may be critical for iterative solvers and at
the same time deteriorates convergence. For the augmented Lagrangian method, the
choice of increase parameters does not influence the converged solution as much but
how this solution (convergence itself) is reached strongly depends thereupon: a wrong
choice of the increase parameter can easily result in an infinite convergence loop (Alart
1997; Yastrebov 2013). For optimal convergence, increase parameters can be adjusted
on the fly during iterations (Bussetta et al. 2012; Sewerin and Papadopoulos 2017).

3.3.2. Convergence of friction problems

The convergence of quasi-static friction problems does not necessarily mean
convergence towards the right solution. A striking example is the Hertzian contact
between two cylinders or a plane and a 2D or 3D cylinder with Coulomb friction
(see Figure 3.3). If the materials which the two solids are made of are different6,
introducing normal contact (without tangential forces) will produce shear stresses at
the interface. On the other hand, the self-similar semi-analytic solution (Spence
1975; Johnson 1985) can be obtained if and only if the contact takes place in such a
way that at each loading step very few elements come into contact.

It is however possible to reach the ultimate load in a single increment without
convergence difficulty, but the solution obtained is different from the solution
obtained for the same case achieved with 100 time steps (see Figures 3.3(d) and
3.3(e)) (Klarbring and Bjöourkman 1992; Christensen et al. 1998; Kravchuk 2008;
Spinu and Frunza 2015; Shvarts 2019). The importance of automatically choosing the
loading step presents a relevant problem in contact mechanics that has only received
very little attention (Torstenfelt 1984). Moreover, the solution of friction problems is
not always unique, even theoretically in quasi-static special cases (Schatzman 1978;
Klarbring 1990a, 1990b; Ballard 1999; Ballard and Basseville 2005).

6 More precisely, this statement is correct if the combination of the following elastic parameters
(1− 2νi)(1 + νi)/Ei is different for both materials (Johnson 1985).
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Figure 3.3. Hertz problem with friction

COMMENT ON FIGURE 3.3.– Contact between an isotropic elastic half cylinder with

a rigid plane under the displacement imposed on the upper surface of the cylinder (a).

The magnified contact zone (b, c) demonstrates the distribution of normal stresses σyy

and shear stress σxy, respectively, obtained with 100 loading steps with the imposed

displacement following the parabolic form uy ∼ i2, where i is the number of the time

step. The stress distribution along the interface for this case is demonstrated in (d).

For comparison, the distribution of the same forces for a solution obtained in a single

loading step is demonstrated in (e), and this solution is erroneous. Figure is adapted

from Shvarts (2019).

The problem of elastodynamic friction is even worse in terms of solution
existence and uniqueness. In the case of Coulomb friction between elastically
different semi-spaces, the uniform sliding solution in the interface may be unstable.
Even worse, the problem itself can be ill-posed. For example, in the case of friction
between a rigid plane and an elastic half-plane, the problem remains well posed and
there is an existing uniform slip solution for Coulomb friction coefficients of less
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than one. On the other hand, for a coefficient of friction greater than one, the slightest
stress disturbance at the interface grows exponentially in time with the exponent
proportional to the wavenumber of this perturbation (Renardy 1992; Martins et al.
1995). Since there is no relevant wavelength limit in classical continuous mechanics,
the problem becomes ill-posed and the lack of convergence with the mesh of these
problems may lead researchers to erroneous conclusions (Andrews and Ben-Zion
1997). In problems with two deformable half-planes, the stability of the solution
depends on the contrast of their elastic properties and their densities (Adams 1995;
Cochard and Rice 2000; Ranjith and Rice 2001): there are situations where the stable
solution exists but only for friction values below a certain critical threshold, and there
are cases where the solution is unstable or ill-posed, regardless of the coefficient of
friction. These instabilities are related to the strong coupling between contact
pressure and shear stress in the case of different materials. These effects give rise, for
example, to brake squeal noise (Kinkaid et al. 2003; Massi et al. 2007) and slip
localizations in geological faults that are responsible for earthquakes (Heaton 1990).
For finite-sized or stratified systems, uniform slip can always be unstable (Brener
et al. 2016; Mohammadi and Adams 2018), which manifests itself in slip
spatio-temporal localization (Renard 1998; Adams 2000; Bui and Oueslati 2010),
adhesion and even opening in some cases (Gerde and Marder 2001; Moirot et al.
2003; Yastrebov 2016). To meet this challenge, studies of friction dynamics must
reject Coulomb-type laws where the shear stress is proportional to the contact
pressure. This bond can be softened by a viscoelastic type relationship as can be seen
in the Prakash–Clifton law of friction, which is based on an experimental
observation (Prakash and Clifton 1993; Prakash 1995) of non-immediate friction
adjustment in response to an instantaneous pressure change. This regularization of
friction results in obtaining physical and converged results (Cochard and Rice 2000;
Ranjith and Rice 2001; Kammer et al. 2014). An alternative is the use of nonlocal
friction laws (Simoes and Martins 1998). However, for relevant friction laws at the
roughness scale, friction dynamics must not represent the following defects due to
the absence of normal-tangential stress coupling.

3.3.3. Quadratic convergence

Unlike many nonlinear problems in continuous media mechanics, contact
problems in most cases do not quadratically converge with the Newton method. This
lack of quadratic convergence is caused by the change in status of the contact
elements between contact/noncontact and slip/adhesion. If the set of statuses is fixed,
the convergence becomes quadratic when all of the terms of the tangent matrix have
been included. In contact problems with the very rapid change of boundary
conditions (e.g. initial penetration greater than element size), it is preferable not
to include all terms in the tangent matrix, which can be added as soon as the
convergence of statuses occurs (Wriggers 2006).
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3.3.4. Mesh and computation time

The stress state considerably varies near the contact area which therefore requires
fine meshes in these areas to ensure the accuracy of the digital solution. The contact
pressure near the edge of the contact area within the framework of smooth surfaces
changes as p ∼ t1/2, where t is the distance to the edge. Because of this fast decreasing
contact pressure, the very fine mesh is necessary to be able to determine the boundary
between contact and noncontact and to measure the contact area, which is important
for a large number of micromechanical contact problems (Yastrebov et al. 2017a,
2017b). For flat punches, the pressure near the edge evolves as p ∼ t−1/2. In this case,
it is easy to refine the mesh near this edge that is a priori known. On the other hand, for
a sliding contact, the uniformly fine mesh would be necessary for this problem. Mesh
refinement is also necessary if the coefficient of friction is not continuous along the
contact interface (Ballard 2016) or when studying a mode II or III crack. In all of these
cases, constraint singularities appear at the interface (Coker et al. 2005; Svetlizky and
Fineberg 2014; Barras et al. 2014; Kammer et al. 2015; Svetlizky et al. 2016).

The simulation of the contact between nonlinear materials requires refined volume
meshes near contact zones (Nigro et al. 2014). This is the case in studies of the
behavior of isolated asperities that will be discussed in detail in section 3.4 where
mesh refinement is very important for detecting the initiation of the plasticization
process that begins in the volume when there is no surface friction (Johnson 1985;
Hill et al. 1989; Mesarovic and Fleck 1999; Kogut and Etsion 2002), but also for
obtaining a precise macroscopic force–displacement response that strongly depends
on the fineness of the volume mesh. This requirement on mesh fineness incurs a
bottleneck in computing rough surfaces in contact with the FEM even when using very
advanced parallel methods deployed on high-performance computing clusters (Dostál
et al. 2016), because it involves very high computation times. In addition, in order to
conduct a statistically significant study of contact between rough surfaces, a very large
number of calculations must be performed (Yastrebov et al. 2015; Rey et al. 2019).
Nonetheless, the fine mesh can be restricted to the area near the contact interface only
and remain coarse enough away from this area to simply capture the stiffness of the
system or avoid edge effects. Some examples of such meshes are shown in Figure 3.4.

3.3.5. Contact constraint

In contact problems, the focus is often on the distribution of surface stress.
However, this is not always easy to achieve because the constraint is often evaluated
at the integration points located inside the elements. In order to have nodal values and
use interpolation later, finite element software programs extrapolate the values found
at the points of interest and averaging. The direct consequence of this procedure is
that the contact stress obtained in such a way is not very accurate and may have
nonzero values outside the contact area. To recover true stress values, the stresses
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must be found at the surface using directly σ = C : (∇u+ u∇)/2|
x∈Γc

in the
elastic case, where C is the fourth-order elasticity modulus tensor, this calculation
could be done during post-processing. For nonlinear materials involving state
variables, the surface stress computation procedure is more costly and requires the
addition of surface integration points at the very beginning of the computation and
involves the integration of the material model locally (Simo and Hughes 1998).
Contrary to what may appear to be the case, this discussion is as relevant for using
the conventional penalization method as it is for the Lagrange multiplier method. It is
true that in the latter it is more trivial to have values of the contact forces (forces [N]),
which are represented by Lagrange multipliers in node-to-surface discretization. For
this purpose, in order to determine stresses [N/m2], it is necessary to associate an area
with each surface node to normalize the value of the Lagrange multipliers. Although
performing this procedure in 2D is trivial, this is not what happens in 3D. Another
possibility to have a good estimation of surface stresses is to have a thin layer of the
elements near the contact surface to minimize extrapolation error. In state-of-the-art
methods, surface stresses can be directly obtained, these are surface-to-surface type
discretization methods: mortar and Nitsche methods (Belgacem et al. 1999; Puso and
Laursen 2004; Puso et al. 2008; Wriggers and Zavarise 2008; Popp et al. 2010;
Temizer et al. 2012; Chouly and Hild 2013; Chouly et al. 2015).

Figure 3.4. Finite element meshes for (a) 2D fatigue fretting contact (source:

Sun 2012); (b and c) rough contact with roughness (source: Shvarts 2019)

It is important to notice that node-to-surface methods cannot transfer uniform
surface forces between non-compliant meshes, which represents a “patch-test” of
interface problems (Taylor and Papadopoulos 1991) (see Figure 3.5). This effect is
related to the under-integration of contact stresses at the interface from which the
advanced analysis was derived to meet this challenge (Crisfield 2000; El-Abbasi and
Bathe 2001; Tan 2003; Chen and Hisada 2006; Hartmann et al. 2009; Oliver et al.
2009; Zavarise and De Lorenzis 2009a, 2009b). Despite that parasitic oscillations
due to subintegration might have very small amplitudes, they can lead to erroneous
solutions if we are focusing on the surface stress state and if, for example, wear laws
based on these stresses are used to update the geometry of worn surfaces (Lengiewicz
and Stupkiewicz 2013; Basseville and Cailletaud 2015; Farah et al. 2016; Basseville
et al. 2019). Surface-to-surface type methods can be used to avoid this defect and
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ensure an accurate stress state. However, if the contrast between materials is very high,
then similar oscillations may appear in the contact even with these methods (Akula
et al. 2019).

Figure 3.5. Comparison of normal stresses σyy with (b) node-to-surface (NTS)

and (c) surface-to-surface (STS) discretization for different choices of master-slave

and mortar/non-mortar surfaces with NTS and STS, respectively (adapted from Akula

2019)

3.3.6. Surface regularity

Naturally, finite element surfaces are of regularity class C0 (only continuity), even
if they are C∞-smooth inside the regions of the elements. The incompatibility of
gradients at the junction between elements is related to the compact nature of finite
element shape functions. This irregularity in surface geometry poses problems for
addressing contact because it induces oscillations in local stresses that can result in
macroscopic oscillation of forces.

To avoid these problems, in applications of contact between bodies of very
different stiffness (tire/road, hardness test indenter/substrate, touch screen/finger and
shoe/floor), it is preferable to use rigid surfaces described by analytical functions or
CAD models (Heege and Alart 1996): the simplest example would be a rigid plane,
which is widely used in micromechanical contact for isolated asperities as well as for
rough surfaces (Mesarovic and Fleck 1999; Kogut and Etsion 2002; Pei et al. 2005;
Yastrebov et al. 2011). However, the iso-geometric analysis (IGA) method, which
takes advantage of smooth and at the same time deformable surfaces, makes it
possible to forget the issues of surface regularity.

However, the formulation of the contact in the context of the IGA is not direct
because the too regular nature of the solutions does not allow the representation of
the contact pressure, which reaches a zero with vertical slope. To this end, different
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techniques have been developed and can be found in the review articles by Temizer
et al. (2011); De Lorenzis et al. (2014).

In the context of classical finite elements, smoothing techniques can be utilized:
this can either exclusively concern the normal vector field (Yang et al. 2005; Popp
et al. 2010), or directly surface geometry (Wriggers and Krstulović-Opara 2000;
Wriggers et al. 2001; Belytschko et al. 2002; Puso and Laursen 2002; Chamoret et al.
2004; Munoz 2008). In addition, the FEM with additional degrees of freedom of
rotation, which ensures the regularity of the normal at the junctions of the elements,
can be considered as an alternative solution to smoothing (Batailly et al. 2013).

UNINTERRUPTED FRACTAL SURFACE.– A contact problem between rough
surfaces with a high-frequency uninterrupted self-affine spectrum (see, for
example, Hyun et al. 2004; Pei et al. 2005) presents a problem poorly posed from a
numerical mechanics point of view. Since the shortest surface wavelength is limited
by the size of the element, convergence cannot be achieved by refining the mesh,
which of course also poses the problem of interpreting the computational results.

3.4. Application I: study of an isolated asperity

3.4.1. Elastic asperity

In the continuous and smooth description7 of “rough” surfaces, “asperities” can
always be isolated, namely, the elements of the simple geometry that can be locally
approximated by elliptical paraboloids:

z(x, y) =
x2

2Rx
+

y2

2Ry
+ z0

in an orthonormed basis {x, y} with two principal radii of curvature Rx, Ry such
that RxRy > 0. However, crystal (minerals) surfaces can be described by different
elementary shapes such as steps, ridges and pyramids. It should be noted that apart
from paraboloids, which are essential for the study of weak contact, another quadric
– hyperbolic paraboloid or saddle point (RxRy < 0) – is essential for the study of
critical junctions in runoff problems between rough surfaces in contact (Plouraboué
et al. 2004; Dapp et al. 2012; Dapp and Müser 2016; Shvarts and Yastrebov 2018a)
but also for contact beyond the infinitesimal area hypothesis (Johnson et al. 1985;
Yastrebov et al. 2014).

7 If the surface is smooth, it is automatically non-fractal because fractals are not differentiable
manifolds: elements of these surfaces cannot be described by simple and differentiable shapes.
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The study of contact between rough edges represents an important branch of the
study of microscopic contacts. First of all, it should be noted that this type of contact is
directly related to the indentation study, especially if the asperities are described at the
scale where the classical theories of continuous media remain valid. On the other hand,
at a small scale, where the purely local characterization of the deformation ceases to
be valid, the link between the contact of asperities and micro- or nano-indentation
should rather be considered. The objective of this section is to present a review of
studies of these elementary contacts carried out with the finite element or boundary
method. At the same time, in relevant cases, we will highlight numerical innovations
that have been used.

The problem of purely linear elastic contact between elliptical paraboloids
represents the first study of deformable contact which was carried out by Hertz
(1881). In the simple case of revolution surfaces, the contact radius a, the gap δ and
the contact pressure distribution are found:

a =

(

3NR∗

4E∗

)1/3

[3.8]

δ =
a2

R∗
=

(

9N2

16R∗E∗2

)1/3

[3.9]

p(x, y) =
3P

2πa2

√

1− x2 + y2

a2
[3.10]

where N is the normal force, R∗ = R1R2/(R1 + R2) is the effective radius of
curvature with Ri being the radius of curvature of the surface i = {1, 2}, E∗ =
E1E2/[(1 − ν22)E1 + (1 − ν21)E2] is the effective modulus of elasticity with νi, Ei

is the Poisson coefficient and Young’s modulus of the field i = {1, 2}. In the vicinity
of the vertex, the parabolic surface z = r2/(2R) is equivalent to a spherical surface
z = R −

√
R2 − r2 up to o(r2/R2). To this end, the Hertz theory formulated for

paraboloids works just as well for spheres if a/R ≪ 1.

Now, Hertzian contact is the conventional test for validating numerical contact
processing techniques. However, these validation tests are often limited to validating
the method for two-dimensional surfaces of revolution Rx = Ry with respect to the
axial symmetry of the problem. The simplest validation can be made for the contact
between a rigid plane R1 = ∞, E1 = ∞ and a deformable paraboloid (sphere or its
half) R2 = R∗, E2 = E∗(1− ν22). On the other hand, an axisymmetric representation
may be satisfying only in the case of normal contact (with no tangential loading).

Copyright ISTE 2025 / File for personal use of Vadislav A. Yastrebov only



100 Numerical Methods for Strong Nonlinearities in Mechanics

CALCULATION OF THE CONTACT AREA.– Since the computation of the contact
area or contact radius is based on the calculation of the number of contact
areas/elements, the numerical evaluation of the contact area is not continuous: the
contact radius grows by steps of comparable size to the discretization of contact
surfaces ∆a � h, which therefore determines the numerical error of the contact
radius. In the general case, as this error is located at the perimeter P of the contact
region of area A, the error on the contact area depends on the ratio Er ∼ Ph/A
that for the revolution contact is reduced to Er ∼ 2h/a, which explains the need
for very fine meshes near the contact boundary to correctly capture the contact
area. For rough surfaces with the minimal wavelength λs, the curvature of the
asperities R ∼ λ2

s/(4π
2∆), where ∆ is the amplitude related to this wavelength.

Given that a ∼
√
R∗δ, the computation error of the contact area evolves as

Er ∼ 4πh
λs

√

∆

δ for each asperity in contact whose number can be very
large (Yastrebov et al. 2017a; Shvarts 2019).

Apart from this simple case which is exclusively used to validate numerical
methods, the contact interaction can be enhanced with friction and/or adhesion. In
the presence of friction, the analytical solution exists only for the following three
cases: (1) normal and tangential contact between identical materials (see footnote 6,
in section 3.3.2) or noncompressible materials; (2) normal contact with infinite
friction (Mossakovskii 1954, 1963; Abramian et al. 1966; Spence 1968); and (3)
stationary slip asperity (Goodman and Hamilton 1966; Hamilton 1983). These three
cases can be used to validate the implementation of friction contact algorithms. The
most used and richest case of the three is notably the case of contact between two
similar materials that was derived in Cattaneo (1938); Mindlin (1949). This test was
used in Laursen and Simo (1993); Yang et al. (2005); Gitterle et al. (2010);
De Lorenzis et al. (2011); Wei et al. (2016); Akula et al. (2019) to name some.
Another friction test was used in Alart and Curnier (1991); Yastrebov (2013) based
on a semi-analytical solution of Klang (1979). The test consists of a contact between
a cylinder and a circular hole in a plane that have quasi-conformal geometries.
Nevertheless, the two numerical solutions (Alart and Curnier 1991; Yastrebov 2013),
which agree, do not converge to the analytical solution in terms of shear stress
distribution. A more consistent numerical solution was obtained in Pietrzak and
Curnier (1999) for a slightly different geometry than that used in the two attempts
mentioned above.

3.4.1.1. Normal and tangential contact separability

In the general case, the contact problem can be divided into two decoupled
problems (normal contact and tangential contact problems) if and only if the elastic
constants of two bodies in contact are the same (see footnote 6, section 3.3.2) and
when the edges or interfaces are far enough from the contact area. Otherwise, the two
problems remain coupled and cannot be rigorously solved separately. However,
still with the same material, numerical schemes need to be used with great caution
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to obtain correct results even for normal loading; see examples of erroneous
solutions (Andersson 1981, appl. 1; Shyu et al. 1989). The coupling between
tangential forces τ(x)/normal p(x) applied to x ∈ (−b, a) and the associated
displacements v, u can be explicitly visualized by the shape of the fundamental
Flamant and Cerutti solution for an elastic half-plane (Johnson 1985):

∂ui

∂x

∣

∣

∣

∣

y=0

= − (1− 2νi)(1 + νi)

Ei
p(x)− 2(1− ν2i )

πEi

a
∫

−b

τ(s)

x− s
ds [3.11]

∂vi
∂x

∣

∣

∣

∣

y=0

=
(1− 2νi)(1 + νi)

Ei
τ(x)− 2(1− ν2i )

πEi

a
∫

−b

p(s)

x− s
ds [3.12]

where i = 1, 2 designates the values associated with the ith body.

A semi-analytic solution for a problem involving a rigid indentor based on the
consideration of self-similarity was obtained by Spence (1975). It should however
be noted that self-similarity is lost on unloading (Stingl et al. 2013; Kim and Jang
2014). This problem, generalized to the case of two deformable solids (Nowell et al.
1988), represents a reference test for the implementation of friction contact algorithms
(Jinn 1989; Klarbring and Bjöourkman 1992; Christensen et al. 1998; Guyot et al.
2000; Gallego et al. 2010; Akula et al. 2019). This normal contact with no coupling
between normal and tangential tractions was considered in Hills and Sackfield (1987).
However, we need to bear in mind that this decoupling is exclusively feasible with
the boundary element method and cannot be used with finite elements where coupling
is inherent. We can note that examples of false numerical solutions of this problem
are recurringly found in the literature; as examples see Jing and Liao (1990); Lee
(1994); Kosior et al. (1999); Elkilani (2003); Li and Berger (2003); Chen and Wang
(2008) and see a discussion on the subject in Kwak and Lee (1988). The self-similarity
of the solution can be used to speed up numerical computations by reducing the
calculation to a single loading step with additional conditions to be verified (Storåkers
and Elaguine 2005; Jelagin and Larsson 2012).

In addition to being used as a test case for numerical algorithms, this problem of
normal contact between different bodies is also important for several applications,
especially to understand failure modes (wear and fatigue crack initiation) of
micro- and macroscopic cyclic normal contact.

Another test that involves compression and torsion of the contact area with finite
friction between a rigid plane and a deformable sphere was used in Chaudhary and
Bathe (1986) based on an analytical solution (Hetenyi and McDonald 1958). This
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problem involves a normal loading phase with no friction that is followed by a
torsion phase with finite friction. This hypothesis is non-physical because the
influence of history is precisely what makes the friction problem so complex and it is
not taken into account in this solution. Another numerical test for frictional contact
between a deformable body and a rigid indenter is the axisymmetric indentation of
an elastic half-space by a cylindrical punch whose solution has been shown to be
similar to parabolic indentation (Spence 1975): this problem was used to test the
implementation of augmented Lagrangian in Torstenfelt (1984); Pietrzak and Curnier
(1999); Yastrebov (2013). An automation of the choice of loading step for friction
problems was proposed in Torstenfelt (1984).

This section will be concluded by highlighting the lack of analytical and numerical
solutions for normal and tangential contact between paraboloids made up of similar
or different materials with a Tresca-type friction law that is more relevant at a small
scale of asperities than Coulomb’s law.

3.4.2. Elastoplastic asperity

The elastoplastic behavior of the material in the vicinity of contact zones is highly
relevant for many engineering applications that involve metallic materials. From the
force–displacement curves of a hard indentor (diamond or tungsten carbide) on a
metallic material or based on the impression, several properties of the material can be
found (Tabor 1951; Oliver and Pharr 1992; Fischer-Cripps 2011; Herrmann et al.
2011). The relevance of this type of indentor/substrate interaction is obvious for
microscopic contact: at a small scale, asperities of the harder (“less plastic”) material
can be seen as indentors for the asperities of the other material. Understanding the
normal and tangential interaction of parabolic surfaces in the elastoplastic regime is
necessary for understanding the microscopic contact of metals and alloys. In this
section, we briefly review the numerical calculations of elastoplastic contact either
between a rigid parabolic/spherical indenter and a deformable substrate, or the
opposite, or between both deformable bodies.

Many studies dedicated to elastoplastic contact focus exclusively on the loading
phase. However, the unloading phase as well as repetitive contact (cyclic loading)
are very important to consider for asperity contact. Figure 3.6 shows the results of a
finite element calculation of the elastoplastic behavior of a spherical body under cyclic
loading where each new cycle has a higher loading amplitude than the previous cycle.
The zero cycle is purely elastic and follows the Hertz solution. For cycles with a higher
force (branch 1), the contact pressure saturates with the hardness of the material and
the derivative of the contact area A with respect to the compressive force ∂A/∂F
remains constant, that is, the contact area evolves in an affine manner with the force
A = A0 + F/H , where H indicates the hardness of the material. The constant A0 is
often neglected because it can be very small for developed plastic contact. Unloading
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(branch 2), in this case, is completely elastic, but does not follow the Hertz solution
A ∼ F 2/3 because the residual curvature is not constant at all points as it should be
for the Hertz solution to be valid. The consecutive reloading, branch 3, again follows
branch 2 (since we still are in the frictionless elastic regime), but as soon as the load
exceeds the maximum load of the previous cycle, the solution qualitatively changes
and again follows the saturation curve (branch 4) and so on: elastic unloading (5);
elastic reloading (6), saturation under load (7). It is therefore clear with this example
that the contact area cannot be predicted for a given load because the loading history
is involved as in all nonconservative evolving problems.

Figure 3.6. Cyclic loading of an elastoplastic “asperity” of

the initial radius R = 50 mm in contact with a rigid plane

Many studies on elastoplastic indentation have been performed and include
Komvopoulos (1989); Kral et al. (1993); Song and Komvopoulos (2013) as well as
Kogut and Etsion (2002, 2003a); Etsion et al. (2005); Kadin et al. (2006); Brizmer
et al. (2007). The elastoplastic contact in the presence of coating was studied in Sun
et al. (1995); Song et al. (2012) using the FEM.

In an idealized case of normal contact between parabolic surfaces and with no friction
and adhesion, the Hertz theory makes it possible to predict the beginning of plastic flow.
To obtain the start point located on the axis of symmetry, the von Mises stress σeq for
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example, simply has to be differentiated with respect to the normalized depth z′ = z/a
where a and the contact radius. Using the following equations:

σz(z)

p0
= −

1

1 + z′2
[3.13]

σr(z)

p0
=

σθ(z)

p0
= (1 + ν)

(

z′ arctan(1/z′)− 1
)

+
1

2(1 + z′2)
[3.14]

and the von Mises stress is given by:

σeq = |σz − σr| = p0m(ν, z′) [3.15]

with:

m(ν, z′) =

∣

∣

∣

∣

(1 + ν)
(

1− z′ arctan(1/z′)
)

−
3

2(1 + z′2)

∣

∣

∣

∣

It can then easily be shown that the von Mises stress reaches the maximal value at a
distance z′∗ which verifies ∂σeq/∂z

′ = 0. The last equation is reduced to the following
equation:

(1 + ν)
(

arctan(1/z′∗)− z′/(1 + z′∗2)
)

= 3z′/
(

1 + z′∗2
)2

[3.16]

The solution to this equation can be approximated by an affine function (see
Figure 3.7(b.4)):

z′∗ ≈ 0.3819375 + 0.33187ν [3.17]

Then, the function m(ν, z′∗) can be approximated by another affine function (see
Figure 3.7(b.3)):

max(σeq/p0) = m(ν, z′∗) ≈ 0.7696422− 0.4738901915ν [3.18]

Finally, if the yield strength is given by σY , then maximal pressure at the center of
the contact p∗0 needed to initiate plasticization is given by p∗0 and the depth is given by z∗,
respectively:

p∗0 =
σY

m(ν, z′∗)
, z∗ = z′∗a∗ =

πz′∗p∗0R
∗

2E∗
=

πz′∗σY R∗

2E∗m(ν, z′∗)
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where R∗ is the effective radius of curvature, and E∗ is the effective modulus of elasticity.
From these equations, the onset of the normalized depth of plastic flow can be found
approximately using [3.18] and [3.17] (Figure 3.7(b.2)):

z∗

R∗
≈

1, 199892 + 1, 042600ν

1, 53928444− 0, 947780ν

σy

E∗
[3.19]

If assuming that the indenter is rigid, it follows that the effective modulus of elasticity
depends only on the Poisson coefficient of the deformable solid E∗ = E/(1− ν2), which
gives us the following approximate form for the normalized depth of the onset of plasticity
(Figure 3.7(b.1)):

z∗

R∗
≈

(1.199892 + 1.042600ν)(1− ν2)

1.53928444− 0.947780ν

σy

E
[3.20]

This analytical estimate is used to build a finite element mesh adapted to elastoplastic
calculations, in other words, to have the depth of the fine mesh that would be adapted to
the calculation. It should noted that the onset of plasticity cannot be easily detected during
the indentation test because if the plastic area remains very small, then it does not affect
the loading curve.

Box 3.1. Onset of plasticity

Figure 3.7. Stress under Hertzian contact

COMMENT ON FIGURE 3.7.– (a) Stress σθ, σr and σz along the axis of symmetry;

(b) dimensionless functions which represent: (b.1) the normalized depth of plastic flow
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onset z∗/R∗E∗/σY , (b.2) the normalized depth with the rigid indenter z/R∗E/σY ,

(b.3) the maximal normalized von Mises stress σeq/p0, (b.4) the normalized depth

z∗/a, the solution to equation [3.16]; The solid lines in (b) represent approximate

solutions [3.19], [3.20], [3.18], [3.17], respectively.

Of course, with small-scale roughness, the microstructure of the metal must be
taken into account because the von Mises plasticity model is not very relevant at this
scale. Nevertheless, hardness and force–displacement curves are not very affected
by CFC crystal plasticity (namely crystallographic orientation) because many slip
systems are activated (Casals and Forest 2009; Durand 2012; Sabnis et al. 2013). This
is however not the case for the HCP network (Casals and Forest 2009). However, the
morphology of the plastic area is very sensitive to the crystallographic orientation of
the indented crystal. In addition to crystal plasticity anisotropy, elastic anisotropy must
be taken into account at this scale. Since even the Boussinesq-based solution cannot
be analytically obtained in the case of general anisotropy, the solution to the contact
problem between anisotropic bodies is a difficult problem. It was, however, solved
by Willis (1966, 1967) through the use of Fourier transforms, where the problem is
reduced to the numerical evaluation of contour integrals. The two-dimensional case is
simpler and there are analytical methods to address it (Lekhnitskii 1981).

The direct calculation of the depth of the onset of plasticity for very small curvature
radii yield values comparable to interatomic distances. Consider polycrystalline gold
which has yield strength σY = 140 MPa, modulus of elasticity E = 79 GPa, Poisson
coefficient ν = 0.4, CFC crystalline parameter a = 0.4 nm. The onset depth can
be estimated based on equation [3.20] at z∗ ≈ 0.0021R∗. When a gold surface is
indented by a harder asperity of micrometric radius, the depth z∗ is nanometric, for
R∗ = 1 µm, z∗ ≈ 2.1 nm = 5.25a, which cannot be properly described in the
context of continuous media mechanics and isotropic plasticity. At this scale, the
discrete nature of the crystal lattice must be taken into account, as in the following
multi-scale studies (Fivel et al. 1998; Chang et al. 2010). Under the high pressure,
at this small scale, the pressure saturates with the hardness of the material, which
in turn depends on the scale (either the depth of the indentation for non-smooth
indenters (Nix and Gao 1998; Qiu et al. 2001; Feng and Nix 2004), or the radius of
curvature for spherical indenters (Swadener et al. 2002; Gao et al. 2015)). Through
geometric (accommodation of shape by geometrically necessary dislocations) and
phenomenological considerations (based on the saturation of dislocations), simplified
laws for contact hardness H were deduced. The simplest distribution for a conical
indenter takes the following form Nix and Gao (1998):

H

H0

=

√

1 +
d0
d

[3.21]

where the macroscopic hardness is H0, d is the indentation depth and d0 is an internal
distance characterizing the material. A more elaborate law has been proposed in
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Qiu et al. (2001) and Feng and Nix (2004), which takes into account the high
frictional stress that is characteristic of body-centered cubic (CC) crystals:

H −HP

H0 −HP
=

√

1 +
1

(1 + β exp(−d/d1))3
d0
d

[3.22]

where HP = 3
√
3 τP and where τP is the Peierls stress, 1+β exp(−d/d1) = r/a(d)

represents the ratio between the radius of extension of the plastic zone with respect to
the contact radius a(d), which is a sinking function d, H0 is the macroscopic hardness,
and d1, d0 are characteristics of the material.

In the case of a spherical/parabolic indenter, the depth of sinking no longer
modifies the material hardness, but the radius of curvature of the indentor R does.
The simple model and, unlike conical indentation, without adjustable parameters, can
be proposed in this case (Swadener et al. 2002):

H

H0

=

√

1 +
R0

fR
[3.23]

where R0 = r̄/(ρsb), and r̄ is the Nye factor8, ρs is the density of statistical
dislocations in the deformed region, b is the Burgers vector, and the factor f is the
ratio of the imprint curvature radius to the indentor radius that can be taken
approximately f = 1.17 (Swadener et al. 2002). For gold, b = 0.288 nm, the
statistical density of dislocations in the strongly deformed region under the indenter
can be estimated as ρs ≈ 1016 m−2, and for the Nye factor r̄ = 2, we get
R0 ≈ 0.69 µm, which agrees with Kim et al. (2018). For macroscopic hardness
H0 = 250 MPa, we obtain the following hardness:

H = 250 MPa

√

1 +
0.59 µm

R

Clearly, this equation cannot be used in finite element calculations, but it can be
used in calculations made with multi-asperity models (Kogut and Etsion 2003a;
Ciavarella et al. 2006; Afferrante et al. 2012; Yastrebov 2019) or with boundary
element codes involving the phenomenological consideration of plasticity by contact
pressure saturation (Sahlin et al. 2010; Manoylov et al. 2013). To simulate the size
effect with finite elements, generalized models of the continuous medium

8 The Nye dimensionless factor determines the fraction of dislocations that must be created to
accommodate the plastic strain relative to the number of geometrically necessary dislocations.
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(Forest 1998; Maugin and Metrikine 2010; Altenbach et al. 2011; Eringen 1999)
should be used, as in Zhang et al. (2005); Zisis et al. (2014); Song et al. (2017);
Lewandowski and Stupkiewicz (2018).

With friction, the von Mises stress can be quite high at the surface and it can
therefore create another source of plasticity growth that will aggregate at the plastic
core developed below the surface. The effect of friction on indentation was discussed
in several works (Tabor 1951; Mata and Alcala 2004), even if the discussion is limited
to Coulomb’s law which can be imprecise in indentation9 and is not valid at a small
scale. In addition, very high pressures are frequent in other applications such as, for
example, indentation, machining (Özel 2006) or metal forming and rolling (Wilson
and Sheu 1988; Ma et al. 2010; Hol et al. 2012). In some studies, the effect of friction
is included in the analysis by considering two borderline cases: frictionless and with
infinite friction, that is, purely adherent contact (Mesarovic and Fleck 1999). Nonlocal
friction was studied in Jelagin and Larsson (2013).

There is a very substantial literature on indentation and the interaction of isolated
asperities. The contact between different elastoplastic materials was studied in Eriten
et al. (2012); Olsson and Larsson (2016). In addition to the properties of normal
contact with and without friction, contact with adhesion plays an important role at
small scales especially for noble metals that oxidize less than other metals. This is
also the case for wear studies, where surface oxides are removed by wear making the
interface more adhesive. Studies on adhesive contact between elastoplastic rough
asperities can be found in Olsson and Larsson (2013). Even more important for the
understanding of interface physics are studies of tangential motion between elastic or
elastoplastic asperities starting with work by Green (1954); Greenwood and Tabor
(1955) on the deformation of asperities in plasticine, which was followed by many
studies (Cocks 1966; Challen and Oxley 1979; Black et al. 1993), among other
numerical studies (such as for example, Tangena and Wijnhoven 1985; Faulkner and
Arnell 2000; Kogut and Etsion 2003b; Jackson et al. 2007; Eriten et al. 2010;
Mulvihill et al. 2011). However, in many studies, asperities are simulated as
half-spheres, which reduces the relevance of quantitative results for true roughness;
the same remark concerns the use of the Coulomb-type law of friction which, as has
already been mentioned several times, is not relevant for contact between asperities
and which must be replaced by Tresca friction.

The interest of all studies of asperities or isolated indentors is to be able to feed
mesoscopic models that are based on the notion of asperities and their
interaction (Yastrebov et al. 2011; Afferrante et al. 2012). In addition, the results
obtained for isolated asperities can be used for the construction or validation of

9 The invalidity of Coulomb’s law for very high pressure is explained by the fact that the contact
area saturates and the maximum resistance also does so accordingly.
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phenomenological models (Hulikal et al. 2015). In the study by Yastrebov et al.
(2011), numerous large-strain elastoplastic calculations on isolated asperities resulted
in constructing a response surface of characteristic asperities found on experimental
rough surfaces, which was then used in a multi-asperity model with an elastic but
short-range interaction10. The scale effect in this type of multi-scale calculation was
briefly analyzed in Yastrebov (2019) assuming that the hardness depends on the
radius of curvature. However, it must be realized that although the interaction
between asperities can be taken into account (Ciavarella et al. 2006; Paggi and
Ciavarella 2010; Yastrebov et al. 2011; Yastrebov 2019), these models based on the
notion of asperities can predict the evolution of the actual area of contact only under
low pressure when the contact areas remain associated with isolated asperities. The
consideration of junction of contact areas associated with neighboring asperities
cannot be rigorously achieved in these models and remains a very important growth
mechanism of the real contact area (Eid and Adams 2007; Greenwood 2007;
Yastrebov et al. 2014).

3.5. Application II: rough surface contact

As explained above, the study of contact between isolated asperities has its
limitations and cannot be directly used to build mesoscopic models capable of
dealing with the problem of contact between rough surfaces for arbitrary loading.
This type of problem can therefore be directly addressed by simulating the contact
between two deformable rough surfaces or a deformable rough surface and a rigid
plane or a rigid rough surface and a deformable half-space. The requirements for
tackling this problem are (1) the construction of one or more rough surfaces and (2)
the solution of normal, and possibly tangential, contact between these surfaces. As
already mentioned, at the discretization scale, the surfaces must be smooth to allow
convergence to a solution with mesh refinement. This involves the implementation of
a smoothing procedure for real topographic measurements, which is not very difficult
because these are often carried out on regular grids. The smoothing can be done by
Béziers surfaces (Pietrzak 1997; Yastrebov et al. 2011), NURBS (Laursen 2002), or
even by Shanon interpolation11 (Hyun and Robbins 2007; An et al. 2019). This issue
was discussed in detail in Thompson and Thompson (2010).

10 There are configuration cases where plasticity is localized near the asperities in contact, and
the interaction between asperities can be considered elastic.
11 Here, Shanon interpolation refer to Whittaker–Kotel’nikov–Shannon interpolation (Marks
2012) applicable to limited-band signals that interpolates Fourier series that can be evaluated
at all points. This interpolation is applicable to two- and three-dimensional signals. The fact
that it uses limited band indeed concurs with the need for small-scale smooth surfaces which is
required for the convergence of mechanical computation.
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For part (2) simulations, the challenges related to the capability of supercomputers
to make this type of computation arises immediately. If we take as a reference mesh
the one utilized for modeling the contact between two spherical asperities (Mulvihill
et al. 2011) with ≈ 190, 000 tetrahedral and hexahedral elements for two quarters
of the spheres, it then implies that for simulating a hundred asperities, it would be
necessary to solve a system with a number of degrees of freedom Ndof ≈ 3× 100×
190, 000 × 2 × 1.5 = 171 × 106, where the factor 3 takes into account the number
of degrees of freedom (DOF) per node, the factor 100 is the number of asperities, the
factor 2 is used for simulating the half-spheres of the asperities instead of the quarters,
and the factor 1.5 to take into account the coarse mesh of the underlying volume
and the spacing between asperities. A solution to the problem associated with so
many DOFs seems rather realistic for high-performance computers capable of modern
performances and for the level of parallelism of computational codes12 (Dostál et al.
2019). On the other hand, contact calculations between asperities of such magnitude
do not yet exist. Moreover, it should be noted that mesh optimization and remeshing
procedures will be very significant to perform this type of calculation.

The history of contact calculations between rough surfaces begins with the first
calculations that were made with boundary elements combined with a finite element
layer on the surface: the two (Francis 1982, 1983b) and three-dimensional methods
(Francis 1983a) called surface finite elements13. Also two-dimensional, a similar
technique was used for slip analysis for an indentor on a surface with
fingerprints (Webster and Sayles 1986). Often, this kind of computation is carried out
with the boundary element method or similar which does not require volumetric
discretization, but is normally limited to linear, isotropic and homogeneous elastic
materials because it is based on the fundamental Boussinesq–Cerutti solution. As
examples, we can cite the pioneering research of Lai and Cheng (1985); Seabra and
Berthe (1987); Sainsot et al. (1990). One of the first results that took plasticity into
account, which was done by saturating the contact pressure to 1.6σY

14, in 3D, was
presented in West and Sayles (1987). The importance of solving topographic
measurements for addressing contact was highlighted in Myshkin et al. (1998). The
study of rough contact between coated solids presents an important problem of
tribology, one of the first simulations was presented in Cole and Sayles (1992), other
studies can be found in Nogi and Kato (1997); Peng (2001). It should be pointed out
that in Nogi and Kato (1997), rough contact between a coated substrate and an
indentor was studied in 3D using a spectral technique (see Stanley and Kato 1997
also for spectral methods). In Borri-Brunetto et al. (1998), interesting considerations

12 See: https://www.lnm.mw.tum.de/en/research/research-fields/highperformance-computing.
13 This is probably the first article in which three-dimensional simulations were presented.
14 Strangely, the authors took a value equal to 1.6σY for hardness which corresponds to the
plasticity initiation pressure even though it was already well known that plasticity onset pressure
and pressure saturation (hardness) values correspond to the different pressures.
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and ideas are presented as well as surface models and boundary element
method-based analysis. The entire volume, from which this publication is taken, is of
interest for roughness and contact studies. One of the earliest treatments of rough
contact with friction was carried out by Kalker et al. (1997). Moreover, it is important
to note that most boundary element methods for the simulation of rough contact are
based on variational principles formulated by Kalker and Van Randen (1972) and
Kalker (1977). A fairly detailed study on elastoplastic contact was carried out in Lee
and Ren (1996) using a boundary element method (Ren and Lee 1994) to which
pressure saturation was added. Moreover, the comment made by Etsion on this last
article and the response of the authors reiterate the important question of
the relevance of the study of elastic contact. Indeed, as already demonstrated
by Greenwood and Williamson (1966), the plasticity index decreases due to the
irreversible plastic deformation that flattens the surface and which, after some time, is
deformed following an elastic regime: this is often the case with engineering systems
which all operate in cyclic loading. In this light, the study of elastoplastic contact is
only relevant for the running-in regime in which plastic deformation can take place.

A two- and three-dimensional contact analysis method was developed
by Lubrecht and Ioannides (1991) based on conventional boundary elements but
endowed with a multi-level multi-integration procedure or multi-level

multi-summation) (Brandt and Lubrecht 1990) making it possible to significantly
reduce the cost of convolution evaluation, moreover the authors use the associated
multigrid method for also improving the solver. The applications of these methods
can be found in many works (Venner and Lubrecht 1996; Polonsky and Keer 1999;
Medina and Dini 2014). It should mentioned that the MLMI method with the Full

Multi-Grid solver did not converge for sufficiently rough surfaces, and by replacing
this solver with a conjugate gradient much more stable and faster convergence was
ensured (Polonsky and Keer 1999); the use of the gradient conjugated with the FFT
method was presented in Ai and Sawamiphakdi (1999). The couplings of the
conjugate gradient with MLMI/MLMS or FFT were compared in Polonsky and Keer
(2000). Strangely, Xiaolan Ai was thanked by the authors but his article on this type
of coupling (see below) was not cited. In Gao et al. (2000), the authors performed
one of the first thermo-mechanical simulations of contact heating at the roughness
scale due to localized friction on the contact areas. A review of numerical methods
for the treatment of rough contact was done in Sayles (1996). Another study that
compared different methods (boundary elements) was retaken in Allwood (2005).
The most recent review was carried out by Bemporad and Paggi (2015), where the
authors compared several methods: (i) a greedy solver algorithm without stress
(conjugate gradient, Cholesky, Gauss–Seidel), for example (Borri-Brunetto et al.
1999); (ii) the restricted conjugate gradient method (Polonsky and Keer 1999);
(iii) alternating direction method of multipliers (Boyd et al. 2011); and (iv) the
nonnegative least squares method (Lawson and Hanson 1995, p. 161). In addition,
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the authors stress the importance of the initial estimate of contact (warm start) for
achieving very fast convergence.

In the scientific landscape of the last 15 years, simulations of rough contact by
the FEM have begun to emerge (Hyun et al. 2004; Pei et al. 2005; Hyun and Robbins
2007; Yastrebov et al. 2011; Song et al. 2017; An et al. 2019). This method can be
used in particular to address problems of nonlinear and heterogeneous materials. The
methods of boundary elements are also still being developed by addressing contact
with heterogeneous (Koumi et al. 2015), viscoelastic (Carbone and Putignano 2013;
Putignano et al. 2015; van Dokkum and Nicola 2019) and elastoplastic bodies (Nelias
et al. 2006; Pérez-Ràfols et al. 2016; Frérot et al. 2019) with adhesion (Carbone and
Mangialardi 2008; Dapp and Müser 2015; Pohrt and Popov 2015; Müser et al. 2017;
Popov et al. 2017; Rey et al. 2017) and friction (Paggi et al. 2014; Pohrt and Li 2014)
also utilizing a remeshing procedure (Putignano et al. 2012). These new algorithms are
still built based on the variational principles set up by Kalker (1977). The emergence
of models based on vibration damping for a system of surface “atoms” interacting
through an elastic operator of boundary elements allowed achieving unbelievably fine
discretizations (Campañá and Müser 2006; Prodanov et al. 2014; Müser et al. 2017).
In Prodanov et al. (2014), the authors present simulations made on a grid comprising
234 ≈ 17.18 × 109 (!) discretization points. However, this technique is not based on
variational principles, in other words, there is no underlying minimization problem.

PURELY GEOMETRIC CONTACT MODEL.– In Pei et al. (2005), the authors
demonstrated the inconsistency of the geometric subtraction model between two
rough surfaces to determine the actual contact area, which was used in Sayles and
Thomas (1978); Majumdar and Bhushan (1991) and Majumdar and Tien (1991), as
well as other models based in particular on the notion of fractal. The geometric
subtraction model (which is similar to the Winkler substrate model) is not accurate
for elastoplastic contact, let alone elastic contact (a good demonstration of this fact
can be found in Dapp et al. (2012)). On the other hand, the model based on the
redistribution of the plastic volume (Pullen and Williamson 1972; Nayak 1973)
makes more sense despite not taking the elastic interaction into account.

2D SIMULATION OF ROUGH CONTACT.– In the Flamant solution (2D), the stress
decreases as 1/r and the displacement changes as ln(r) where r is the distance to
the point of application of the force, which creates problems for defining the
displacement as it diverges to infinity. In Boussinesq’s solution (3D), the
asymptotes are 1/r2 and 1/r, respectively, for stress and displacement. As a
result, the solutions to both problems are quite different. At the geometry level, the
peaks that appear as asperities on a profile are not vertexes (true asperities) that
may come into contact, the statistic of the two is not the same, although one can be
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deduced from the other (Nayak 1971). This has direct consequences on the
mechanics of contact between profiles and surfaces. A direct correction of the 2D
results for estimating the contact area as A = π/4

∑

i l
2
i where li are separate

contact lengths, which, for example, were used in the 2D analysis by Mitchell et al.
(2013). Despite that it leads to recovering the linear (or quasi-linear) growth of the
contact area with the applied pressure, it cannot be considered as a precise solution.
In addition, sealing and lubrication problems in mixed mode cannot be addressed
in 2D because a single point of contact blocks the flow of a fluid, which therefore
requires an artificial correction that is difficult to properly achieve. 2D and 3D
computations were compared by Francis (1983a) to determine what is the level of
anisotropy at which the 2D model can be representative of a sinusoidal surface.
However, although the level of anisotropy required is not very large, it is unlikely
that small-scale roughness be very anisotropic. In conclusion, 2D contact (for
profiles) cannot be used for estimating the contact of rough surfaces in 3D.

THE MICROSTRUCTURAL ASPECT OF THE CONTACT.– In addition to surface
geometry, the underlying microstructure plays an important part in
micromechanical contact. We propose here some references (this list is largely
incomprehensive) where this aspect is taken into account in the analysis of contact
problems. One of the first microstructural models for fretting fatigue for studying
microstructure on a regular 2D grid was introduced in Goh et al. (2003). More
realistic and 3D microstructures for the same problem were studied in Dick and
Cailletaud (2006); Dick et al. (2008). This work was followed by many
others (McCarthy et al. 2014; Nigro et al. 2014; Lindroos et al. 2015; Tkalich et al.
2017; Lindroos et al. 2018). Crystal plasticity with the size effect (gradient
plasticity) was taken into account in Ashton et al. (2018), which was motivated by
observing and modeling the relationship between grain size and fretting fatigue

crack onset (Ashton et al. 2017). Studies including microstructure as well as
roughness are extremely rare (see Durand 2012).

3.6. Conclusion

Great progress has been made in the numerical simulation of microscopic contact
with finite element and boundary element methods. However, a few shortcomings that
should be addressed can be identified:

– Most studies of contact between asperities employ the Amontons–Coulomb law
of friction which is not suitable for small scale. In the future, it would therefore be
interesting to redo all of the studies using Tresca’s law, which is more relevant for
small-scale roughness.

– Another avenue for the future should be to study elastic and elastoplastic contact
between two rough surfaces. It would be particularly important to better understand

Copyright ISTE 2025 / File for personal use of Vadislav A. Yastrebov only



114 Numerical Methods for Strong Nonlinearities in Mechanics

the transition between adhesion and slip that will make the link between static friction
and roughness and material parameters. Taking into account the microstructure
with its anisotropy and crystal plasticity will be important to draw quantitative
results. In addition, it would be interesting to study the viscoelastic behavior that
will allow quantifying the state of contact according to time and velocity (for low
velocities), which will then make it possible to study dynamic friction. Furthermore,
the viscoelastic effect will allow for better understanding the sliding (or flow) of
glaciers on the rocky bed as well as accurately formulating the laws of friction that
govern it.

– For higher speeds, the viscous effects will no longer be sufficient to understand
small-scale frictional sliding. Since friction dissipation is highly localized, the
heat produced is such that locally a fusion of the material occurs. Taking this
phenomenon into account in highly coupled thermo-mechanical simulation will
enable our understanding of this complex phenomenon to be improved.

– Much progress has been made on the simulation of fluid/solid interaction in the
contact interface (Lubrecht and Venner 1999; Sahlin et al. 2010; Dapp et al. 2012;
Pérez-Ràfols et al. 2016; Stupkiewicz et al. 2016; Temizer et Stupkiewicz 2016;
Shvarts and Yastrebov 2018a, 2018b; Ager et al. 2019; Alp çakal et al. 2019; Shvarts
2019; Vlădescu et al. 2019). On the other hand, the strongly coupled finite element
model that will allow roughness-scale lubrication in mixed regime to be simulated is
still missing (Vakis et al. 2018).
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