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The Stress Field Created by a Circular 
Sliding Contact 
Equations are obtained for the complete stress field due to a circular contact, region carry-
ing a "hemispherical" Hertzian normal pressure and a proportional distributed shearing 
traction. The equations are illustrated by graphs of a constant-yield parameter and 
graphs of maximum tensile stress. 

M * IE ASUHEMENTS of the frictional properties of material 
surfaces are commonly made by rubbing a lightly loaded spherical 
slider over a flat of the material being tested. The quasi-static 
stress field so generated is the sum of two determined by the field 
equations of the linear theory of elasticity and by the boundary 
conditions on the plane z = 0 of the half space z > 0: 

V y z = Vzz = 0; Vlz = — (3fP/2ira3)(a- - r*)1'', < « (1) 

= p „ = 0; p „ = — (3P/2irtt3)(o2 - »•')'/' r < a. (2) 

All traction on z = 0 is to vanish for r > a and all stresses decay to 
zero at least as rapidly as (x2 + y2 + z 2 ) - 1 at points remote from 
the origin. In (1, 2), r = (x2 + y2)1^2, a is the radius of the loaded 
region, P is the total normal load, and fP is the as-directed total 
tangential force, Fig. 1. These conditions have been discussed by 
Mindlin [l],2 Cattaneo [5], and Sonntag [6]. 

This same stress field is also generated by crossed-cylinder 
lubricant research apparatus. Moreover, it represents quite 
closely the state of affairs near each of the several load-bearing 
asperities between a large pair of sliding surfaces. The stresses 
generated, in many instances, govern the onset of surface failure. 

Method of Analysis 
In principle, all that is necessary for a formal determination of 

the stress field is to write down the expressions for the state of 
stress due to the application of a point force (half-space solutions 
of Boussinesq and Cerutti) and to integrate over the plane z = 0 
with the appropriate weighting functions given by (1, 2). Unfor-
tunately, this direct approach leads to a series of intractable in-
tegrals. The analysis may, however, be carried out by an exten-
sion to the shear-loaded half space of a method introduced by 
A. E. Green [2] for the stress analysis of the normally loaded half 
space. This extension has the advantage of being equally ap-
plicable to the mixed boundary-value problem in which a com-
bination of displacements and stress components is specified on 
z = 0. 

To effect the extension, we write the Cartesian displacement 
components u, v, w in terms of a harmonic stress function T(x, y,z): 

2p« = 2v(d2T/dx2) + 2(b2T/i>z2) - z(b3T/cte2dz) (3a) 

2pv = 2v(d2T/dxdy) - z(d3T/dxdydz) (3b) 

2/j.w = (1 - 2i>)(~d2T/dxbz) - z(d3T/bxdz2) (3c) 
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Fig. 1 Schematic v i e w of contact . Equat ions a p p l y to upper b o d y fo r 
w h i c h n o r m a l force is in pos i t i ve z-d i rec t ion a n d tangen t ia l force in 
pos i t i ve x -d i rec t ion 

where p is the shear modulus and i> is Poisson's ratio. The field 
equations of the linear theory of elasticity and the first two 
boundary conditions (1) are then automatically satisfied. By 
taking T as the imaginary part of the complex harmonic function 

/ ; KH) | j ( z r - | r 2 ) In (z, + 7?,) - | 7Azi + | r 2 j d£ 

where Zi = z + and Ri = (zi2 + r2) '/2; the plane z = 
0 is automatically cleared of traction for r > a. 

It remains to choose t{£) so as to satisfy the last of boundary 
conditions (1). On z = 0 for r < a, equations (3, 4) imply that 

Pt, = = f ° taw - r 2 ) - " / ^ 

so that 

m = 
- 2 d Ca 

* d U ( r> 
Jr2 - e-)~'/2dr. 

(5) 

(6) 

For pxz given by the third of boundary conditions (1), <(£) = 
— (3/TV27ra3)£. 

The determination of the stress field then follows from (3, 4) by 
elementary quadratures. We find that, writing z2 = z + ia and 

= (Z22 }-2)'A the stress components are conveniently ex-
pressed in terms of the imaginary parts of three complex func-
tions : 

F = TT(Z — ia)Ri + ir2 ln (R2 + 22) (7a) 

G = -iR23 + \zz2R2 - iia3 + izr2 ln (R2 + z2) (76) 

77 = \ia3z - \zR23 + liaR23 - \z2R2r2 

n(R2 + z2). (7c) 
4 

Journal of Applied Mechanics J U N E 1 9 6 6 / 3 7 1 
Copyright © 1966 by ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/27/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The Cartesian components of the stress field generated by (1) 
are the imaginary parts of 

Pxx = • M M - f ) 3fP x_ 
2ira3 r4 

dH dH 1 d2H 
+ V — + a ~ v)x — + - xz - 2vr2F 

dy dx 2 dxdz 
(8a) 

Vyy = 
3fP x_ 
2ira3 r4 

dH 1 d2H 
vy — + — yz — 2 vr2F 

oy 2 oyoz 

3/P xz_ dF 
P " ~ 27ra3 r2 dz ; V v 

3/P xj/z c W 
27ra3 2r4 dz2 

Px, = 

Pz* = 

3/P 1_ 
27T03 !-2 

3/P 
2TT(13 r4 ' ) ( " " I ' D 

(8 b) 

(8c, d) 

(8e) 

, 1 dff 1 , s dtf 1 d 2 / / ' 
+ ^ v ^ + v x ( 1 ~ 2 " } v + T n r 2 dy 2 dx 2 dxdz (8/) 

On the z-axis the only nonvanishing stress component is 

p „ = (3/P/27TO3)[fz arctan (a/z) - a - ik/z2(z2 + a2 )"1 ] . (9) 

On the surface inside the contact zone, i.e., z = 0, r < a, the 
stress components other than those given by (1) are 

Pyy = [3*/(4 + » ) ] ? „ = (®/»)[3v/(2 - l» ) ]p„ 

= -(3fP/2wa%xv (10) 

while on the surface outside the contact zone 

Pxx = — (3/P/27ra3)(xr~4)[2(>'2 + yi/2)F0 

+ K3 - 4.rV"2)//„] (11a) 

Pyy = -(3/P/2TO3)(rar-4)[2rc2Fo + (1 - 4i/2r-2)/ /0] ( l i b ) 

P« = — (3fP/2ira3)(yr~4)[(r2 - 2px2)F0 

+ f ( l - 4a !r-«) f f 0 ] (11c) 

where 

F0 = - ia(r2 - a2)1 / ' + arctan [a(r2 - a2)"1 ' '2] ( l i d ) 

ffo = U ( r 2 ~ a 2 ) V ! - ib'4 arctan [a(r2 - a 2 ) ' ' / ' } 

- \ar'-(r2 - a2)1'*, ( l i e ) 

Determination of the stress field generated by the boundary 
conditions (2) requires no extension of Green's method; one has 
only to derive displacements from a harmonic stress function 
M(x, y, z) according to the rules 

2p.u = - ( 1 - 2v)(d2M/dxdz) - z(d3M/dxdz2) (12a) 

2pv = -(1 - 2v)(d2M/dydz) - z(d3M/dydz2) (12b) 

2nw = 2(1 - v)(d2M/dz2) - z(d3M/dz3) (12c) 

and proceed as before. As the case (2) has been treated by 
Huber [3] (though in a less usable form), we merely state the 
relevant results. It is convenient to introduce the imaginary 
part of the complex function 

K = z ln {z + ia + [r2 + (z + m)2]1 /2} 

- [r2 + (z + ia)2]1'*. (13) 

Then boundary conditions (2) generate the stress field 

p „ = (3P/2ira*)[2vK + (1 - 2v)r~i(y2G - x2G + xr2dG/dx) 

+ zr-\y2F - x2F + xr2dF/dx)] (14a) 

puy = (3P/2ira3)[2vK 4- (1 - 2v)r~4(x2G - y2G + yr2dG/dy) 

+ zr~4(x2F - y2F + yr2dF/dy)} (14b) 

p „ = -(3P/27T03 ) (-IC + zdK/dz) 

Pijl = ~(3P/2ira3)zdK/dy; px! = -(3P/2ira3)zdK/dx (14c) 

Viv = (3P/2m,s)(xr-4)[(l - 2v)(-2yG + r2dG/dy) 

+ z(-2yF + r2dF/dy)]. (lid) 

On the z-axis 

Pxx = Vyy = (3P/27T03){(1 + v)\z arctan (a/z) - a] 

+ ia 3 / ( a a + z2)} (15a) 

P i l = — (3P/27ra3)[as/(a2 + z2)]. (156) 

On the surface inside the zone of contact 

pxx = (3P/2Tra3)[2vK0 + (1 - 2v)(G0i-2 - 2x2>-4G0 

+ x2i-2Ko)} (16a) 

Vyy = (3P/27ra 3 ) [2^ 0 + (1 - 2v)(Gor~* - 2y2r~4G0 

+ y*>-2Ko)} (16b) 

pXy = (3P/27Ta3)(l - 2v)(xyr~2K0 - 2xyr~4G<1) (16c) 

while outside the zone of contact 

pxx = (3P/2ira3)(ias(\ - 2i')(2x2;-4 - r'2)] (17a) 

PyV = (3P/27ra3)[-ja3(l — 2v)(2y2r~4 — r~2)] (17b) 

pxu = (3P/2ira3) [-|a3(l - 2v)xy>-4\ (17c) 

where 

Go = ^(a2 - r 2 ) ! / ! - ia3; K„ = - ( a 2 - r 2 ) I / ! . (17c/) 

Discussion 
The stress field created by a circular sliding contact is mainly 

of interest in connection with questions of mechanical failure. 
The quantities of greatest interest, then, are the position of any 
region of failure predicted by a yield criterion and the appearance 
of large tensile stresses, particularly in the surface. In the dia-
grams which follow, the unit of distance is the radius of the 
circle of contact, given by 

a = { f P ( R r l + ttrT'Ki - + U - ^ M l } 7 ' US) 

and the unit of stress is the maximum pressure at the center of the 
contact: 

po = 3P/2ira2. (19) 

The suffixes 1, 2 refer to individual properties of the two bodies in 
contact. Poisson's ratio has been taken as 0.3 in the examples. 

Plastic Yielding. This can be predicted by the von Mises yield 
criterion, the square root of the second invariant of the stress 
deviator tensor. In Cartesian form, this majr be written 

Jt = P,y* + Px? + Vxy* + UiPyy ~ VzzY + (P« ~ PxxY 

+ (Pxx ~ Pyy)2] ( 2 0 ) 

with yielding occurring when (Jo)1^2 reaches the material yield 
point in simple shear. Equation (20) was evaluated on the plane 
y = 0 for a number of coefficients of friction and the results are 
shown in Figs. 2, 3, and 4. For / = 0, the diagram shows the 
well-known result that the region of maximum yield parameter 
occurs on the centerline a distance 0.5a below the surface. Figs. 
3 and 4 show the effect of increasing the friction to 0.25 and 0.50. 
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Fig. 5 Lines of constant Ji'/'/po beneath 
contact between norma l l y loaded cyl inders 

Fig. 6 Lines of constant Js'A/po beneath 
contact between cyl inders, f = 0.25 

-15 -10 -0-5 O 0 5 IO OC 

Fig. 7 Lines of constant Ja'A/po beneath 
contact between cyl inders, f = 0 .50 
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Fig. 8 Lines of constant J2 ' /2 /po "n surface of circular contact, f = 0.25 Fig. 9 l i nes of constant Ja'A/Po in surface of circular contact, f = 0 .50 

The region of maximum yield parameter moves toward the surface 
and becomes more intense while simultaneously a second region of 
high yield stress develops in the surface at x — — 1.0a. The point 
of maximum yield stress changes from below the surface to a 
position on the surface at a coefficient of friction about 0.27. 

It has been customary to assume that conditions on the center 
plane of a circular contact are similar to the equivalent case of a 
cylindrical contact. For comparison, Figs. 5, 6, and 7 show the 
same three examples, / = 0, 0.25 and 0.50, worked out for cylin-
ders in line contact using the equations given by Poritsky [4] and 
assuming a state of plane strain; i.e., pyy = vpxx + vpZ!. The 
relation between contact width and maximum pressure is now 

= 2 P/iro. 
The region of maximum 3'ield parameter moves toward the sur-

face in both cases as the friction is increased, but rather less 
rapidly in the case of a circular contact. The second region of 
shear stress develops on the opposite side of the centerline and at 
the edge of the contact, a fact that may affect the stability of a 
system when failure is imminent, especially for failure mechanisms 
where small changes of temperature are important. 

For this reason, two further views of the circular contact are 
shown as Figs. 8 and 9. These are plan views of the contact and 
show the shape of the region of maximum yield parameter which 
develops in the surface. The case / = 0 is not shown since it 
merely consists of a series of concentric circles the diameters of 
which may be obtained from Fig. 2. 

Tensile Stresses. With brittle materials the appearance of tensile 
stresses is more important than the value of the yield parameter. 
Even when the coefficient of friction is zero, one of the principal 
stresses in the surface is tensile near the edge of the contact. 
This stress acts in a radial direction and accounts for the well-
known ring crack. Fig. 10 shows a graph of this stress along the 
centerline y = z = 0 where it coincides with pxx. As the coef-
ficient of friction increases, pxx ceases to be a principal stress but 
it is still the largest tensile stress acting in the plane of the sur-
face. The stress becomes unsymmetrical, compressive at the rear 
of the contact and greatly intensified at the front. The com-
pletely closed ring of tensile stress around the circumference 
breaks at / = 0.079; by / = 0.50, the tensile stresses at the front 
edge of the contact have risen so high as to be equal to the com-
pressive stress at the center. 

Off the centerline, the maximum (ensile stress acting in the 
plane of the surface is given by 

Journal of Applied Mechanics 

V = U P - + Vvu) + i [ ( P „ - Pyy)2 + W 1 ' A (21) 

and lines of constant p are shown in Figs. 11 and 12 for / = 0.25 
and 0.50. The direction this stress makes with the s-axis is 

= -J- arctan [2px AVx. Pyy)) (22) 

This direction is shown by arrows at a few selected points, the 
base of the arrow being the point of reference. That this system 
of tensile stresses is very shallow can be seen from Fig. 13 which 
shows the the maximum principal stress on a section through the 
centerline, i.e., in the plane y = 0, for the same three coefficients 
of friction. Also shown on Fig. 13 are the 90-deg isoclinics origi-
nating from the point of maximum tensile stress. These are 
likely to control the initial direction of propagation of a crack. 

Conclusion 
The equations have been derived for the stresses beneath a 

1 0 

0-5 

2 0 - 1 0 

0 5 / I 

V ^ / i o vy 
©a: ( C o m p r e s s i o n ) 

Fig. 10 Stress pxx a long x-axis of circular contact for f =-- 0 .25, 0 .50 
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Fig. 11 
0 .25 

Lines of constant tens i le stress ac t i ng in p l a n e of contac t , I = 

\ 
x O 2 \ 

1-5 \ 

loo 

^ 7 // 

/ — -

/ f / 
/ 

J I a 

f = 0 5 

Fig. 13 One of t w o p r inc ipa l stresses on p lane y 
it is in tens ion, 1 = 0, 0 .25 0 . 5 0 

0 in reg ion w h e r e 

Fig, 12 Lines of constant tens i le stress ac t i ng in p l a n e of contac t , f = 
0 . 5 0 

circular region of contact subject to a normal and a tangential 
force distributed "bemispherically" over the surface. They have 
been illustrated by graphs of yield parameter and tensile-stress 
distribution, and it has been concluded that the most likely region 
of failure is the front edge of the circle of contact. 
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