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1. Introduction
In this practical work we will work with the integration of Boussinesq and
Cerutti solutions (see Fig. 1). The Boussinesq solution makes a link between
concentrated normal force N and displacements/stresses developped in the
isotropic elastic half-space. The Cerutti solution provides the same result for the
concentrated tangential force T on a half-space. Therefore, assuming linearity of
the problem, we can use the principle of superposition to obtain the solution for
a general case of arbitrary distributed tranctions on the surface of the half-space
by integrating the Boussinesq and Cerutti solutions. We consider the following
elastic properties of the half-space: Young modulus E, Poisson ratio ν and shear
modulus G = E/(2(1 + ν)).
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Figure 1: Schematic of the problem: (a) Boussinesq problem, (b) Cerutti problem.
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2. Boussinesq solution
The Boussinesq solution for a concentrated normal force F applied at {x′, y′} is
given by the following expressions for the stresses at point {x, y, z}:

ρ =
√

(x− x′)2 + (y − y′)2 + z2

r =
√

(x− x′)2 + (y − y′)2

σB
x = N

2π

(
1− 2ν
r2

(
1− z/ρ
r2

(
(x− x′)2 − (y − y′)2)+ z(y − y′)2

ρ3

)
− 3z(x− x′)2

ρ5

)
σB

y = N

2π

(
1− 2ν
r2

(
1− z/ρ
r2

(
(y − y′)2 − (x− x′)2)+ z(x− x′)2

ρ3

)
− 3z(y − y′)2

ρ5

)
σB

z = −3N2π
z3

ρ5

σB
xy = N

2π (x− x′)(y − y′)
(

1− 2ν
r2

(
1− z/ρ
r2 − z

ρ3

)
− 3z
ρ5

)
σB

xz = −3N2π
z2(x− x′)

ρ5

σB
yz = −3N2π

z2(y − y′)
ρ5 .

Associated displacements on the surface of the half-space at {x, y} are given by:

uB
x = N(1− 2ν)

4πG
x− x′

r2

uB
y = N(1− 2ν)

4πG
y − y′

r2

uB
z = N(1− ν)

2πG
1
r

= F (1− ν2)
πEr

,

note that the vertical displacement is of positive sign since the axis OZ is oriented
downwards in the half-space.

These expressions could be reformulated as follows:

σB
ij(x, y, z) = NSB

ij (x− x′, y − y′, z, ν)

uB
i (x, y) = NDB

i (x− x′, y − y′, G, ν)

where SB
ij (∆x,∆y, z, ν) and DB

i (∆x,∆y,G, ν) are the Boussinesq kernels for
stresses and displacements, respectively. Note that even though we included
the Poisson ratio ν in the expressions for the Boussinesq kernels, σz, σxz, σyz

components are independent of ν.
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2. Cerutti solution
The Cerutti solution for a concentrated tangential force Tx applied at {x′, y′} is
given by the following expressions for the stresses at point {x, y, z}:

σC
x = Tx

2π

(
−3(x− x′)3

ρ5 +

+ (1− 2ν)
(
x− x′

ρ3 − 3(x− x′)
ρ(ρ+ z)2 + (x− x′)3

ρ3(ρ+ z)2 + 2(x− x′)3

ρ2(ρ+ z)3

))
σC

y = Tx

2π

(
−3(x− x′)(y − y′)2

ρ5 +

+ (1− 2ν)
(
x− x′

ρ3 − x− x′

ρ(ρ+ z)2 + (x− x′)(y − y′)2

ρ3(ρ+ z)2 + 2(x− x′)(y − y′)2

ρ2(ρ+ z)3

))
σC

z = −3Tx

2π
(x− x′)z2

ρ5

σC
xy = Tx

2π

(
−3(x− x′)2(y − y′)

ρ5 +

+ (1− 2ν)
(
− (y − y′)
ρ(ρ+ z)2 + (x− x′)2(y − y′)

ρ3(ρ+ z)2 + 2(x− x′)2(y − y′)
ρ2(ρ+ z)3

))
σC

xz = −3Tx

2π
(x− x′)(y − y′)z

ρ5

σC
yz = −3Tx

2π
(x− x′)2z

ρ5

Associated displacements on the surface of the half-space at {x, y} are given by:

uC
x = Tx

4πG

(
1
r
− (x− x′)2

r3 + (1− 2ν)
(

1
r
− (x− x′)2

r3

))
uC

y = − Tx

4πG ·
(x− x′)(y − y′)2ν

r3

uC
z = Tx

4πG ·
(1− 2ν)(x− x′)

r2 .

By analogy with the Boussinesq solution, these expressions could be reformulated
as follows:

σC
ij(x, y, z) = TxS

C
ij(x− x′, y − y′, z, ν)

uC
i (x, y) = TxD

C
i (x− x′, y − y′, G, ν)

where SC
ij (∆x,∆y, z, ν) and DC

i (∆x,∆y,G, ν) are the Cerutti kernels for stresses
and displacements, respectively. Note that even though we included the Poisson
ratio ν in the expressions for the Boussinesq kernels, σz, σxz, σyz components
are independent of ν.
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3. Integration of Boussinesq and Cerutti solutions
Consider a pressure distribution p(x, y) and tangential OX tractions q(x, y) =
q(x, y)ex applied on region Ω of the surface of the half-space. Assuming linear
elasticity, we can superpose the Boussinesq and Cerutti solutions to obtain the
following expressions for the stresses at point {x, y, z}:

σij(x, y, z) =
∫
Ω

(
SB

ij (x− x′, y − y′, z, ν)p(x′, y′) + SC
ij(x− x′, y − y′, z, ν)q(x′, y′)

)
dx′dy′.

(1)
For the displacements on the surface, the integrals are the following:

ui(x, y) =
∫
Ω

(
DB

i (x− x′, y − y′, G, ν)p(x′, y′) +DC
i (x− x′, y − y′, G, ν)q(x′, y′)

)
dx′dy′.

(2)

4. Problem
Consider now that we have a rigid parabolic indenter coming in contact with a
half-space. The induced pressure is then given by Hertzian solution

p(x, y) =
{
p0
√

1− r2/a2, if r =
√

(x− x0)2 + (y − y0)2 ≤ a
0, elsewhere,

where p0 is the pressure in the center. Let us now assume that the indenter is
in tangential frictional motion in OX direction. Then assuming that normal
and tangential loads are decoupled, we can assume that the developed frictional
tractions are given by

q(x, y) =
{
p0µ
√

1− r2/a2, if r =
√

(x− x0)2 + (y − y0)2 ≤ a
0, elsewhere,

where µ is the coefficient of friction. So, now we know the tractions on the surface
and we would like to know what are the induced stresses and displacements.

5. Task
You are provided with BoussinesqCeruttiSolver.py Python script, which
performs the integration from Eqs. (1,2).

1. Set up appropriate values for indenter’s radius and the indentation force.
2. Determine the associated contact pressure and contact radius using Hertz’

equations.
3. Introduce relevant data in the provided code and set the friction coefficient

to zero. Analyze the stresses in a section passing through the center of the
indentation. Analyze induced surface displacements.
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4. Increase the friction coefficient. Check how the stresses and displacements
vary.

5. Construct a code that plots stress field on the surface of the half-space
using the examples provided in the code.

6. Deduce and plot the first principle stress component σ1(x, y) on the surface
of the half-space for different coefficients of friction.

7. Check the analytical solution by Hamilton & Goodman (attached paper),
compare with your integrated stress field.

8. Quantify the validity of the assumption on the decoupling of normal and
tangential tractions on the form of the indenter accommodated by the
resulting displacement.
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