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1. Introduction
Reynolds equation for tangential sliding between two surfaces or profiles is given
by (see Fig. 1):

∇ ·
(
h3∇P

)
= 6µV 0 · ∇h.

h is the film thickness and P is the fluid pressure. The viscosity is assumed to
be constant µ = const which is a valid assumption for hydrodynamic lubrication.
Let’s assume that sliding occurs in the x direction only so the sliding velocity is
given by V 0 = V0ex. The equation then can be expanded as:(

∂

∂x

(
h3 ∂P

∂x

)
+ ∂

∂y

(
h3 ∂P

∂y

))
= 6µV0

∂h

∂x
.

Expanding the derivatives gives:

3h2 ∂h

∂x

∂P

∂x
+ h3 ∂

2P

∂x2 + 3h2 ∂h

∂y

∂P

∂y
+ h3 ∂

2P

∂y2 = 6µV0x
∂h

∂x

At the border of the domain assuming to be in contact with the lubricant we
can impose zero pressure

P (Γ) = 0,

as illustrated in Fig. 1: P (x0) = P (x1) = 0.

V0

x

h(x,y) h0

x0 x1

Figure 1: Schematic of the problem.
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2. Finite Difference Solver
Reynolds equation can be solved on a rectangular domain [0, Lx]× [0, Ly] dis-
cretized inNx×Ny elements. Finite difference scheme can be used to approximate
all derivatives as:

Hx +Hy = 6µV0x
∂hi,j − hi−1,j

∂x

with
Hx = 3h2

i,j

∂hi,j

∂x

Pi+1,j − Pi−1,j

2∆x + h3
i,j

Pi+1,j − 2Pi,j + Pi−1,j

∆x2

Hy = 3h2
i,j

∂hi,j

∂y

Pi,j+1 − Pi,j−1

2∆y + h3
i,j

Pi,j+1 − 2Pi,j + Pi,j−1

∆y2 .

Note that since our profile h(x, y) is analytical function, we do not use finite
differences to find the derivatives of h. Note also that the first order derivative
of pressure could be also approximated as ∂P/∂x = (Pi+1,j − Pi,j)/∆x.

The linear system of equations can thus be formed[
M
]

[P ] = [B],

where vector [P ] is a flattened vector of pressures on a regular grid

[P ] = [P11, P12, . . . , P1ny , P21, P22, . . . , P2ny , . . . , Pnx1, Pnx2, . . . , Pnxny ]
ᵀ

,

[B] is the right hand side and [M ] is the five-diagonal matrix of coefficients. The
components of the [M ] matrix are the following split into five diagonals:

• Central terms in front of Pi,j :

Aij = −2h3
i,j

(
1

∆x2 + 1
∆y2

)
• “East” terms in front of Pi+1,j :

Bi+1,j =
3h2

i,j

2∆x
∂hi,j

∂x
+
h3

i,j

∆x2

• “North” terms in front of Pi,j+1:

Ci,j+1 =
3h2

i,j

2∆y
∂hi,j

∂y
+
h3

i,j

∆y2

• “West” terms in front of Pi−1,j :

Bi−1,j = −
3h2

i,j

2∆x
∂hi,j

∂x
+
h3

i,j

∆x2

• “South” terms in front of Pi,j−1:

Ci,j−1 = −
3h2

i,j

2∆y
∂hi,j

∂y
+
h3

i,j

∆y2
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So the structure of the matrix is given by:

[M ] =



A11 C12 0 · · · 0 B21 0 0 · · · 0
C11 A12 C13 · · · 0 0 B22 0 · · · 0
0 C12 A13 · · · 0 0 0 B23 · · · 0
...

...
... . . . ...

...
...

...
...

...
0 0 0 · · · A1ny

0 0 0 · · · 0
B11 0 0 · · · 0 A21 C22 0 · · · 0
0 B12 0 · · · 0 A22 C23 0 · · · 0
0 0 B13 · · · 0 C22 A23 C24 · · · 0
...

...
... . . . ...

...
...

... . . . ...
0 0 0 · · · 0 0 0 0 · · · Anxny


As can be seen, the matrix has only five diagonals with non-zero elements,
therefore a sparse matrix should be used to store it.

Boundary conditions

Now, to impose zero Dirichlet boundary conditions on the border of the domain,
we can use penalty method: i.e. set big values at the diagonal of the [M ] matrix.
If I = {i1 +nxj1, i2 +nxj2, . . . , ik +nxjk} is the set of indices of the nodes on the
border of the domain, then the diagonal elements of the [M ] matrix should be
set to a large number α. The right hand side [B] should be set to zero at these
nodes. To impose non-zero pressure at the inlet, we can set the corresponding
element of the right-hand side vector [B] to αPinlet, where Pinlet is the inlet
pressure.

Flux

As soon as the pressure field is found, one can compute the flux as

q = − h3

12µ∇P

or in component form

qx = − h3

12µ
∂P

∂x
, qy = − h3

12µ
∂P

∂y
.

3. Practical work
You are provided with two python solvers:

• 1DReynoldsSolver.py - 1D Reynolds equation solver
• ReynoldsSolverSparseOptimized.py - 2D Reynolds equation solver

To run them type
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python3 1DReynoldsSolver.py

or simply

python 1DReynoldsSolver.py

3.1 Fixed-Incline Slider Bearing
Consider a fixed-incline slider bearing shown in Fig.2. In file 1DReynoldsSolver.py,
you will find a finite difference solver to solve Reynolds equation for this
configuration. It solves equation:

3h2 ∂h

∂x

∂P

∂x
+ h3 ∂

2P

∂x2 = 6µV0x
∂h

∂x

for x ∈ [0, 1] and boundary conditions P (0) = P (1) = 0.

y

1
slope

V0

Figure 2: Fixed-Incline Slider Bearing

3.1.1 Task
1. Solve analytically Reynolds equation for fixed-incline slider bearing. Im-

plement your analytical solution in function:

def analyticalSolution(x,h0,l,slope,mu,v):
return your_solution

2. Compare your solution with the numerical solution.
3. Adjust parameters of the numerical solution to increase the accuracy.
4. Study the change of solution as a function of slider’s slope and minimal

film thickness h0.

3.2 3D Fixed-Incline Cylindrical Slider Bearing
Consider a fixed-inline cylindrical slider bearing with

z(x, y) =
{
h0− s(x− x0 −R), if (x− x0)2 + (y − y0)2 ≤ R2,

hmax, elsewhere.
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We solve Reynolds equation:

3h2 ∂h

∂x

∂P

∂x
+ h3 ∂

2P

∂x2 + 3h2 ∂h

∂y

∂P

∂y
+ h3 ∂

2P

∂y2 = 6µV0x
∂h

∂x

At the border of the domain assuming to be in contact with the lubricant we
can impose zero pressure

P ((x− x0)2 + (y − y0)2 ≥ R2) = 0.

Python script ReynoldsSolverSparseOptimized.py solves this problem using
finite differences as shown in Section 1. It plots pressure field P (x, y) and
streamlines of the flux q = qxex + qyey.

3.2.1 Task
1. Play with physical and numerical parameters in the solver to understand

better the physics of such bearings.
2. Compare qualitatively the solution of the 3D problem with the 2D one.
3. Compare quantitative solutions for 3D and 2D cases for the pressure along

the central line.
4. Add surface roughness to the incline sliding bearing. How does it change

pressure distribution?
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