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1. Introduction
Boussinesq solution for the relationship between normal force N applied at x′, y′
and the normal displacement of an elastic isotropic half-space is given by the
following equation:

uz(x, y) = (1− ν)N
2πGr , r =

√
(x− x′)2 + (y − y′)2

where G is the shear modulus and ν is the Poisson ratio. This solution could
be generalized for the case of viscoelastic half-space through Laplace transform.
The Laplace transform of the Boussinesq solution taking into account the loading
history is given by:

ūz(x, y, ) = (1− ν)sJ̄(s)N̄(s)
2πr ,

where the Laplace transform of the loading history is given by:

N̄(s) =
∫ t

0
N(t′)e−s(t−t′)dt′,

and J(t) is the creep compliance function. The creep compliance function is
given by:

J(t) =
[

1
E∞

+
(

1
E0
− 1
E∞

)(
1− e− t

τ

)]
H(t),

where H(t) is the Heaviside step function, E0 is the instantaneous Young’s
modulus and E∞ is the long-term Young’s modulus, and τ is the characteristic
relaxation time. The Laplace transform of the creep compliance function is given
by:

J̄(s) = 1
s

[
1
E∞

+ 1
E0 − E∞

τs

1 + τs

]
.

Integrating the evolution of the pressure distribution in space in time and using
the convolution theorem, we obtain the following expression for the normal
displacement:

uz(x, y, t) = (1− ν)
2π

∫
Ωm

q(x, y, a)
r

dA, (1)
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where
q(x, y, a) = J ∗ dP (2)

is the convolution of the creep compliance function and the pressure distribution
in space.

2. Viscoeastic indentation
In this practical work, we will consider the case of a rigid spherical indenter
of radius R and a viscoelastic half-space. Let us assume that the indenter is
pushed into the half-space with a monotonic displacement prescribed in time
δ(t). Then the contact radius a(t) will change in time, but within the contact
area, displacement distribution is known:

for r ≤ a(t) : uz(x, y, t) = δ(t)− x2 + y2

2R H(t).

Substituting this expression into Eq. (1), we obtain:

δ(t)− x2 + y2

2R = (1− ν)
2π

∫
Ω(t)

q(x, y, a)
r

dA.

We replaced maximal contact area Ωm by Ω(t) assuming that the contact area
is monotonically increasing function. Since contact radius a(t) =

√
δ(t)R, we

can show that the above equation results in the following form of q:

q =


4

π(1− ν)R
√
δ(t)R− r2, if r ≤ a(t)

0, elsewhere
= 4
π(1− ν)RRe{

√
δ(t)R− r2},

where Re designates real part. This form together with the definition of q (2)
can be inverted to obtain the pressure:

P (x, y, t) = 4
π(1− ν)R

t∫
0

µ(t− τ) d
[
Re
{√

δ(τ)R− r2
}]

,

where µ(t) is the deviatoric relaxation function, i.e. the relaxation function makes
a link between deviatoric strain rate ėij and deviatoric stress sij :

sij =
t∫

0

µ(t− τ)ėij(τ)dτ.

Because of the symmetry of revolution, we can rewrite the equation for pressure
as:

P (r, t) = 4
π(1− ν)R

t∫
0

µ(t− τ) d
[
Re
{√

δ(τ)R− r2
}]

.
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The expression under the differential sign can we rewritten as:

d
[
Re
{√

δ(τ)R− r2
}]

=


1

2
√
Rδ(τ)− r2

∂δ(τ)
∂τ

dτ, if r ≤ a(τ) =
√
Rδ(τ)

0, elsewhere.

Therefore, the pressure can be written as:

P (r, t) = 2
π(1− ν)

t∫
0

µ(t− t′)∂δ(t
′)

∂t′
1√

Rδ(t′)− r2
dt′.

Assuming a single relaxation time τ , we can write the deviatoric relaxation
function as:

µ(t) = µ∞ + (µ0 − µ∞) exp(−t/τ).

3. Numerical implementation
You are provided with Python code Solver_ViscoelasticIndenter.py that
implements the above equations. Your task is to study indentation at different
loading rates and to compare the results with the elastic case. You can con-
trol the loading rate by changing the parameter v in the code. For material
parameters, you can control mu0, mu1 for shear moduli for slow and fast loading
rates, respectively, and tau for the relaxation time. Finally, you can consider
indentation regime different from simple linear one implemented in the code:
delta = v*t.
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