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Abstract We revisit the classic problem of an elastic solid
with a two-dimensional wavy surface squeezed against an
elastic flat half-space from infinitesimal to full contact.
Through extensive numerical calculations and analytic
derivations, we discover previously overlooked transition
regimes. These are seen in particular in the evolution with
applied load of the contact area and perimeter, the mean
pressure and the probability density of contact pressure.
These transitions are correlated with the contact area shape,
which is affected by long range elastic interactions. Our
analysis has implications for general random rough sur-
faces, as similar local transitions occur continuously at
detached areas or coalescing contact zones. We show that
the probability density of null contact pressures is nonzero
at full contact. This might suggest revisiting the conditions
necessary for applying Persson’s model at partial contacts
and guide the comparisons with numerical simulations. We
also address the evaluation of the contact perimeter for
discrete geometries and the applicability of Westergaard’s
solution for three-dimensional geometries.
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1 Introduction

Contact interaction between solids is affected by inevitable
roughness of surfaces. This roughness is linked with stress
fluctuations, friction, adhesion and wear of contacting
solids, as well as leakage and energy transfer through
contact interfaces. A two-dimensional sine wave surface is
one of the simplest models of periodic and continuous
surface roughness. This model has been considered in
many applications, including optical scatter [26],
mechanical contact [13], heat and electric transfer [17],
fluid flow slip conditions [8], and others. Although appar-
ently simple, finding the analytical solution for the
mechanical contact between an elastic solid possessing a
double sine wave surface with an elastic plane seems
improbable [13]. Since the last three decades, numerical
methods allow to overpass the limitations and complexity
of analytical methods and obtain solutions for arbitrary
geometries and boundary conditions. About thirty years
ago, Johnson et al. [13] studied in detail the contact
between elastic regular wavy surfaces. Although no closed-
form analytic solution was obtained, the question of
squeezing a wavy surface was considered fully addressed
and the results of [13] served as a reference for verification
of following numerical studies, see e.g. [17].

In this paper, we take a fresh look at this contact
problem and reveal some interesting features, which were
overlooked before. We show that such a simple example
undergoes some surprising transitions in the evolution of
contact area, contact perimeter, mean pressure and the
probability distribution of contact pressure. These results
have important implications for analytic models of rough
contact, including asperity-based models [3, 10, 11, 19, 27]
and Persson’s contact model [22, 23] (for a review, see [4,
31]). We also establish and discuss a closed-form solution
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for the probability density of the contact pressure for a
double sine wave function, which might help revisiting the
extension of Persson’s model to partial contact [24].

The paper is organized as follows. In Sect. 2, we set up
the problem. In Sect. 3, the classical results of Johnson,
Greenwood, Higginson are discussed and compared with
new numerical results in Sect. 4. The shape of the contact
area is analyzed in Sect. 5. We then discuss the compact-
ness of the contact area shape, the contact perimeter and
reveal associated geometrical transitions (Sect. 6). A
detailed study of the contact pressure spatial distribution is
provided in Sect. 7. In Sects. 8 and 9, the probability dis-
tribution of contact pressure is investigated and discussed
with respect to Persson’s model, respectively. The results
are summarized in Sect. 10. In Appendices 1 and 2, addi-
tional numerical data and the derivation of the probability
density for a double sine surface are given.

2 Problem Setup and Numerical Methods

Let us consider an elastic half-space (E;,v, are the
Young’s modulus and Poisson’s ratio, respectively) with a
wavy surface (Fig. 1)

z(x,y) = Bcos(2nx/A) cos(2my/ 1) (1)

This surface is gradually pressed in frictionless non-adhe-
sive contact with a flat elastic surface (E;, v;) by a pressure
po applied at infinity. We perform numerical simulations
using an FFT-based boundary element method (BEM)
[25]." These simulations serve to find the evolution of the
contact area, contact perimeter and spatial pressure distri-
bution. The simulations are performed on a grid of n X n =
4096 x 4096 points. The external pressure is applied in 200
load steps up to the pressure p* ensuring the full contact
between surfaces [13]

pr= \/EnE*B/i,

where E* = 1/((1 —v3)/E; + (1 — v3)/E,) is the effective
Young’s modulus.
We compute the contact area fraction A’ = A/Agor A’ =

A/ % as the ratio of points in contact to the total number of
points.” Computed in this way, the contact area fraction
converges to a continuous value as N tends to infinity.

! The original formulation of the FFT algorithm [25] contains some
errors. The most relevant is that the solution is shifted in Fourier
space by one wave number. For the current and previous studies [30,
31], we use a corrected version of this method, which was validated
on many cases.

2 The nominal contact area is Ay = A% as we carry out our simulations
on a surface A x A to make use of periodic boundary conditions. In the
following, however, due to symmetry, all results will be shown only
on a quarter of the simulation domain.
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Fig. 1 Simulation domain with a double sine wave surface, Eq. (1)

3 Analysis of Johnson, Greenwood, Higginson

In [13], the authors derive two asymptotic solutions for the
considered problem. The first is applicable at infinitesimal
contact pg/p* < 1. It uses Hertz theory and neglects elastic
interaction between contact spots. The curvature at the
crest is 472B/ 2%, so the relative contact area at small loads
is given by

N3
N:nG£>, (2)
8

where p’ = po/p*.

Near full contact, when the entire surface is in contact
except a small circular region in the deepest valley, the
authors suggest an analogy with a pressurized “penny-
shaped” crack with no singularity in stress at the edge, it
gives
A== (1) ()
2n
The same authors carried out numerical simulations using
an FFT-based boundary element method® and performed
real experiments on a silicon rubber block put in contact
with a flat surface. The block dimensions are 80 x 80 mm,
the wavelength A=40mm and the amplitude
B = 0.24 mm. Although such an experimental setup does
not represent a half-space with an infinite periodic wavy
surface, the obtained experimental results appear to be in
good agreement with numerical results and asymptotic
estimations (2) and (3). The ensemble of results obtained in
[13] is depicted in Fig. 2a and complemented by recent
numerical results [17]. All points describing the evolution
of the contact area seem quite accurate, and the authors of

3 This method is quite similar to the one [25] used in this paper, both
are based on the Kalker’s variational formulation [15, 16].
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Fig. 2 Evolution of the contact area: (a) results from the literature
[13, 17]; (b) actual numerical results and the zoom on the transition
region in the inset

[13] judged that the number of data points was sufficient to
trace a master curve, which was assumed to be everywhere
concave. A similar concave master curve can be found
in [17, Fig. 6]. As shown in Fig. 2b, the aforementioned
authors underestimated the complexity of the contact area
evolution. Using a larger number of load steps, we reveal
that in a certain interval, the evolution of the contact area
may be a convex function of the contact pressure and
consequently the mean pressure p = p’/A’ becomes a non-
monotonous function of the external pressure and contact
area (see Fig. 3). Note that a trace of this convexity may be
guessed in the coarse data points from [13, 17], see Fig. 2a.

Normalized mean contact pressure, p/A’

0.2 L L L
0 0.2 0.4 0.6 0.8 1

Contact area fraction, A’

Fig. 3 Evolution of the mean contact pressure p’/A’ as a function of
the contact area fraction

4 Contact Area Evolution

The contact area is evidently a monotonous function of the
pressure dA’(pg)/dpo > 0, which is well approximated by
asymptotic (2) for infinitesimal and full* contact by (3) (see
Fig. 4).

As mentioned, in the interval of intermediate contact
areas, we find a surprising deviation from the master curve
assumed in [13] (compare Fig. 2a, b). Inflection points
exist, changing the curve from concave to convex and back
to concave. In the considered case, the mean contact
pressure p = py/A’ is a monotonously increasing function
if and only if the secant of every point of the curve A’(p’) is
bigger than the tangent at this point, i.e.

A’ dA’
= s
po  dpo

(4)

This equation is satisfied both for light- and high-pressure
asymptotes, (2) and (3), respectively. It is also evident to
see that from Fig. 2b. The violation of condition (4)
necessitates inflection points, which can be found by
equating the terms in (4). This change in the evolution of
the contact area is connected with two transitions occurring
in the growth of the contact zone (see Fig. 5). The first
point corresponds to the moment when the contact area
looses convexity and forms a quasi-square shape. The

* The FFT-based method, which we use, fails to predict accurately
the contact area evolution near full contact A’§97 %. Thus, to
compare with the asymptotic solution near full contact (3), we used a
more accurate axisymmetric finite element model with discretization
6,400 points per wavelength (triangles in Fig. 4b).
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Fig. 4 Logarithmic plots of (a) the contact area evolution with
pressure compared with the asymptotic solution at small pressures and
(b) the non-contact area evolution with pressure deficiency compared
with pressurized penny-shape crack asymptotic solution near full
contact; triangles represent results obtained with an axisymmetric
finite element model, which appears to be more accurate near full
contact than the FFT-based model

second point corresponds to the moment when two separate
contact zones merge. In contrast to the classic geometrical
overlap model [6], these transitions occur at different
pressures (and contact areas).

We would like to emphasize this surprising behavior of
the mean contact pressure. During the observed transition,
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Fig. 5 Shape of the contact area at different pressures; the contact
area grows from left bottom and right top corners toward the center
up to reaching the critical convex shape (shaded in light blue), right
after the shape looses convexity up to the reaching the junction
(corresponding contact area shaded in gray). These transitional shapes
correspond to the local maximum and minimum in mean contact
pressure (see inset in Fig. 2b); black points depict numerical results;
solid curves (red and orange) are the fits of Gielis formula (5); fit
coefficients determined by least mean square are given in Table 1
(Color figure online)

the local contact pressure at every contact point increases
only slightly, but the contact zone extends rapidly (see
Sect. 7), which results in the mean contact pressure drop.

5 Shape of the Contact Area

The shape evolution of the contact area (Fig. 5) is strictly
asymmetric for area expansion (small pressures) and gap
closure (close to full contact). In the first case, the contact
area rapidly looses circular form. Its shape can be
approximated by the Gielis “superformula” [9], which can
be written in the following form in polar coordinates,
taking into account all necessary symmetries:

5)

In Fig. 5, we plot the boundary of the contact area at dif-
ferent pressures (see Table 1 in Appendix 1). Equation (5)
fits perfectly most of the numerically found boundaries,
except right before and after the junction moment. Tran-
sition states corresponding to convexity change in the
contact area evolution are shaded.

(@) = g |cos(p)[“+]sin(¢)|*
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Fig. 6 Evolution of the shape compactness ¢ =S/v2A’ and

Celosure = S'/+/2(1 — A’) with increasing contact area; evolution of
¢ from circular to square-like shape is quite linear as well as the
evolution of cgjosure from square-like shape to a circular region. The
change in compactness is linked with the variation of the mean

6 Contact Perimeter, Compactness and Percolation
Limit

The ratio of the contact perimeter to the square root of the
contact area S’/ /A’ is a measure of compactness of contact
spots, where S’ = S/1 is a normalized perimeter. Equiva-
lently, near the full contact, a more relevant quantity is the
measure of compactness of non-contact spots §'/v/1 — A’.
For a general case of N random contact spots with S, A
being the relative perimeter and area of i-th spot, this ratio
is

s S s
_ 2 Zl i ﬁ < > )
VAT A {A”)
The ratio ¢ = F(N)/+/N that characterizes compactness of

contact spot(s) can be easily found for many simple forms:
for a rectangle with ratio of sides ¢

F(N)

pressure (see inset in the lower part); the capital letters refer to
specific shapes, which are depicted on the right. To demonstrate the
importance of the correcting factor 17(A’) (see Eq. (6)), we plot also
non-corrected compactness (dashed red and dash-dotted blue lines)
(Color figure online)

Crectangle = 2 V &+ 1/'5 +2,

for an ellipse” with ratio of axes &

Cettipse & VA3V E+ 1/E+2—/3E+3/E+ 10),
for a square and a circle if one puts ¢ = 1:

Ceirele = 2V/T,

the circle is the most compact form, so ¢ = 24/7 is the
infimum compactness value.

The discrete contact perimeter S¢ is computed as the
number of switches from contact to non-contact and vise
versa along vertical and horizontal lines of computational
grid points. Evidently, measured this way, the contact

Csquare = 4,

> One can use Ramanujan’s approximation for the perimeter of an

ellipse with semi-axesaand b, S ~ n(3(a + b) — \/(3a + b)(a + 3b)).
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asymmetry in the curve

perimeter for any discretization is always overestimated
except for the case of a square contact zone aligned along
the direction of discretization. In case of a circular contact
zone, the contact perimeter is overestimated by a factor
4 /m, which is the ratio of the perimeter of a square of side
2a to the perimeter of a circle of radius a inscribed in this
square®.

The contact zone, being almost circular at light loads,
transforms at some stage into an almost square shape
aligned along vertical and horizontal lines of nodes. Next,
the contact areas loose convexity and merge together.
Thereafter, the perimeter’s shape becomes more and more
circular toward the full contact (see Fig. 5). To take into
account the effect of shape alteration on the measurement
of the contact perimeter, we introduce a piece-wise linear
correction factor #7(A’) as a function of the contact area

fraction
4 A /4 Al A
;—A—/q ;—l y lfO_A <AS(]’
N s
" AT <<
oA, e PhesAEt

(6)
where qu ~ 34.8 % is the area fraction corresponding to a

quasi-square shape of the contact area. This correction
ensures a more accurate estimation of the contact perimeter
in its continuum sense. The corrected normalized perimeter
is computed as

6 See also a discussion in [31].
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where n is the number of discretization points per wave-

length A. This correction is crucial as can be seen in Fig. 6,
where we plot non-corrected

d Sd

/24"

and corrected compactness

(7)

- s4 8 ®)
AW VRA

Indeed, the transformation from the initially circular shape
into a square-like shape should be reflected by compactness
¢ increasing from 2+/7 to 4. But for a non-corrected mea-
sure, an inverse trend is observed, ¢¢ decreases from value
~4.5 to 4, which does not reveal the associated change of the
shape. It is evident, however, that for an arbitrary geometry
and multiple contact spots of different shapes, a correction
function cannot be worked out, thus a discrete measurement
of compactness may be employed [1, 2].” Note that /2
appears in the denominator of Eq. (8) as for a simulated
periodic surface 4 x A one entire and four quarters of
asperities come in contact; at gap closure, we have four half
valleys that remain out of contact, so N = 2. Note also that
for the considered case, to get a relevant measure of com-
pactness one should normalize by the contact area before
junction of contact zones (red circles in Fig. 6) and by the
non-contact area after the junction (blue circles in Fig. 6).
The compactness evolves almost linearly from infini-
tesimal contact state to square-like area shape at A;q, the
slope dc/dA’ =~ (4 — 24/m) /Ay, For closing gap, the clo-
sure compactness also decreases almost linearly starting
from the percolation area fraction Al , ~ 40.2 %, so®
de/dA’ = (2¢/m — 4.04) /(1 — Alo;)- The ratio of these
slopes, or simply the ratio of two area transitions,
s~ Ag/(1 — Apercot) = 0.89, reflects  the asymmetry
between the initial area evolution and the gap closure. For a
simple geometrical overlap model [6], in which the contact
area is found as a cut of a surface geometry by a plane,
Seeom = 1 and evidently the percolation limit is

Alercol = 0.5. Remark that the percolation limit for a simple

7 The term contact perimeter, which is introduced in these references,
should not be confused with the contact perimeter employed here. By
contact perimeter, the author of [1, 2] understands the number of
boundaries between neighboring pixels that form the discrete shape.

8 We found the closure compactness close to the percolation limit to
be Cclosure &~ 4.04. Regardless the fact that for “closing gap” regime,
the shape of the contact boundary cannot be approximated by a
square, its compactness measurement near the percolation limit can
be with a good accuracy approximated by ¢ ~ 4.
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(Color figure online)

wavy surface (pressed against an elastic half-space) is
surprisingly close to the estimation A, ~42.5 %
recently obtained in simulations of elastic contact for
random fractal surfaces [5].

As the compactness ¢ evolves approximately linearly
with area, then the contact perimeter may be assumed to
evolve as

2 —
§'~2V2A \/E+TﬁA’ , A <AL 9)
sq

before the percolation limit, and as

2.02— /1
1-A/

percol

S’ ~2/2(1-A") | V1 + (1-A")|, A" > Al

percol
(10)

after this limit. In Fig. 7, the evolution of the contact
perimeter with contact area is depicted and compared with

good accuracy with Egs. (9) and (10). The switch between
two regimes (area expansion and gap closure) is confined
within a narrow transition interval confined between the
convexity loss and the percolation of contact spots.

The perimeter (compactness) measurements are of
interest for characterizing topology of contact zones,
adhesion [21], numerical error estimation [31] and for
tunneling charge transfer [7, e.g., Ch. 23.4]. Moreover, for
a random rough surface, the rapid increase in compactness
may indicate a transition between an asperity-based contact
state, which implies separate elliptic contact regions, to a
more complex state with complex junctions between these
regions.

7 Contact Pressure

We plot the contact pressure distribution along a diagonal
and a horizontal line in Fig. 8, a and b, respectively. We
follow its evolution with increasing pressure. To verify the
importance of the two dimensionality of the problem, we
compare the numerical results along symmetry axes and
Westergaard’s solution obtained for a one-dimensional
sinusoidal profile [28]

plx.a) = zp% ¢ ) o ()

Surprisingly, this solution fits accurately the contact pres-
sure distribution along the horizontal profile for the entire
range of pressures. It is not quite the case for the pressure
distribution along the diagonal line, especially close to the
junction between contact zones. It is worth noting that
along this line, the contact pressure rises faster than
Westergaard’s fit. The complete spatial distribution of the
contact pressure is depicted in Fig. 9.

(11)

8 Probability Density of Contact Pressure

In Fig. 10, we plot the evolution of the probability density’
(PDF) of normalized contact pressure P'(p,po) under
increasing pressure pg, where p = p/p. The PDF experi-
ences a transition separating the regimes before and after
percolation. At the transition a singularity'® emerges in the
probability density at zero pressure and moves for

° Hereinafter, the PDF of contact pressure is computed only in
contact regions; the integral of the PDF over all contact pressures is
equal to one.

19 We cannot show rigorously that the peak observed in Fig. 10 is a
singularity, but we can assume that if at full contact a singularity
exists, see Eq. (14), it is probable that it also persists at smaller
pressures.
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Fig. 9 Spatial distribution of p,=0.03p* T p,=0.23p*
contact pressure at different A'=79% ~__ A'=40.7%
loads. The colors aide to A T~ _—
visualize the pressure - B -
magnitude (Color figure online)
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Fig. 10 Evolution of the normalized probability density of normal-
ized contact pressure P'(p,po). Linear evolution at infinitesimal
pressures changes to a concave PDF at moderate loads; at reaching
the percolation limit p’ ~ 0.23 (marked with an arrow) a singular
peak emerges and gradually shifts to higher pressure p at higher loads
po; at full contact, the peak position reaches p = 1, and there is a
nonzero PDF for all pressures including at zero pressure (see Fig. 11)

increasing pressure py toward the center of the distribution
(see the bright zone in the figure).

At infinitesimal pressures, when the contact can be
approximated by non-interacting Hertzian asperities'", the
PDF of contact pressure of a single asperity can be
expressed as

2p 8 pA” _8p

P(p,po<p')=5—=c—>5 =253
Prax 9 P5 9P?

(12)

where the maximal pressure py.x = 3po/2A’. The PDF of
the normalized contact pressure is

_ o 8
P'(p,po < p") = gp- (13)
At full contact, the PDF of contact pressure is simply
proportional to the PDF of a wavy surface. However, we
could not find in the literature a formula for this quantity.
We derived that at full contact (see Appendix 1)

F|arccos(|1 — p|), ———
gy~ 2T e
) 7[2 = )

where

'''We recall that in this

P(r) = Pmax\/ 1- (r/a)2~

case, the contact pressure is

Bn/p" numerical

12 F 0.002 —
0200
0.246
0.304
r [z —
1000 —
analytical
0.8 - 0.002 — Eq. (13)
1.000 -=--- Eq. (14)

Probability density of contact pressure, P(p/p)

0 / L L L

0 0.5 1 15 2
Normalized contact pressure, p/p

Fig. 11 Normalized probability density of normalized contact
pressure P'(p) for different external pressures py. Numerical results
at light contact pg = 0.002p* and A’ =~ 1.2 % are in good agreement
with analytical prediction (13); at full contact, the numerical results
match Eq. (14). The singularity peak appears in the PDF at the
percolation limit, see also bright color region in Fig. 10

l
F(l,k) = / ;dd)
o A/ 1—k2sin*(¢)
is the incomplete elliptic integral of the first kind.
To evaluate Eq. (14) at p = 2 or equivalently at p = 0,
we replace the variable p = 1 + cos(¢), so p — 2—when
@ — 04, thus Eq. (14) can be rewritten as

EF(go,l/sin((p)) EF(%I/‘P)
w*  sin(e) -0 m @

P (p,po=p")=

)

where the elliptic integral for ¢ — 0, can be approximated
as:

® 1
1 1 T
F(<P71/<P)%/7df:</’/— =¢5.
1_2/02 ) 2

)V 2/ , V1—s

Thus, the PDF of the minimal and maximal contact pres-
sures in full contact is

P'(0,p") = P'(2,p") = 1/m. (15)

Note that a general result may be obtained by computing
the PDF only in vicinity of the peak pressure, where it has a
curvature 4n%p*/)? yielding P = N*/(Ag2np*), where N
is the number of asperities per normalization area Ag. In
considering case the normalized amplitude p*/p = 1, Ay =
7% and N = 2, which also gives P(0) = 1/z.

In Fig. 11, we plot the PDF of contact pressure at dif-
ferent loads. At light pressures, pg < p*, the PDF has to be
a linear function of the contact pressure. For pg = 0.002p*,
our numerical results are in good agreement with analytical
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Fig. 12 Schematic figure explaining the computation method for the
probability density function of a wavy surface. Iso-pressure curves
y(x,p) and y(x,p +dp) at different pressures p, the area between
curves 1s proportional to the probability density increment

P(p,p + dp)dp

prediction (13). A small deviation is observed for higher
values of local pressure p. The numerical results are slightly
noisy due to a relatively small number of contact points
(~=206,000). At higher pressures py the PDF looses monoto-
nicity, and, as commented earlier, at reaching the percolation
limit Apereol, a singular peak emerges at zero pressure p = 0,
which gradually shifts with increasing pressures toward
p = 1, which is reached at full contact. We showed, Eq. (15),
that at full contact the PDF of zero pressure is nonzero
P'(0) = 1/z and it is in perfect agreement with numerical
results. We suppose that the PDF may be also nonzero at
percolation, when contact zones just start to merge and the
PDF singularity emerges at zero pressure; however, it is not
trivial to prove it analytically nor numerically.

9 Implications for Persson’s Model of Rough Contact

In contrast to asperity-based models [3, 4, 10, 11], Pers-
son’s model of rough contact does not rely on the notion
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Fig. 13 Comparison of the analytically evaluated (21) and numer-
ically evaluated (2 x 10% grid points per /4 x 2/4 and 500 bins)
probability density function of a wavy surface

of asperities [22, 23, 29]. The author starts from a full
contact between surfaces under external pressure py; if the
surfaces are perfectly flat, the PDF of contact pressure is
simply a Dirac-delta function P(p) = d(p — po). When the
roughness with wave numbers from k; to (k; is gradually
introduced in the surface spectrum by increasing {, then
the PDF of contact pressure spreads out and takes a
Gaussian shape. Note that the full contact is preserved for
any (. To describe this evolution, Persson deduced a
diffusion equation for the PDF (acts as density of dif-
fusing medium) of contact pressure (acts as spatial
coordinate) depending on the variance of the surface
roughness (acts as time):

OP(p,{) 19%P(p,{) (16)

wvo 2 o
where
Cky
VO =5 Em(0) =7 [ Rowa

is the variance of the contact pressure depending on the
magnification parameter {, which controls the breadth of
the surface spectrum (see, e.g. [20, 31]), m, is the second
spectral moment, E* is the effective Young’s modulus [14],
@’ (k) is the radial power spectral density and k is the wave
number (see [18] for a comprehensive derivation of this
equation). However, as the considered surface is rigorously
Gaussian, an infinite pressure is needed to maintain full
contact for any {. To extend this model to finite pressures
and partial contacts, it was suggested to impose a boundary
condition to Eq. (16), which postulates that the PDF of
zero pressure is always zero [24]

P(p=0,0) =0. (17)
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Table 1 Evolution of the contact area fraction A’ and corrected
perimeter S’ (see Eq. (7)) with increasing pressure p’ = po/p*; q,k, po
are the coefficients of Gielis formula (5) that approximate the shape
of the contact perimeter, coefficients are found by the least mean error

fit

S/

P AR p/A q k Po
0.20 1.23 0.163 0.558 128.439 3.857 0.177
2.00 5.90 0.339 1.244 12.374 3.081 0.382
5.75 12.55 0.458 1.861 7.520 3.524 0.547
12.75 23.20 0.549  2.632 6.285 4.750 0.718
16.25 28.51 0.570  2.972 6.929 6.094 0.779
19.23 33.29 0.577  3.261 9.001 8.927 0.825
* Contact area looses convexity p’ ~ 20.1 %, Agqq =~ 34.8%

20.28 35.09 0.578 3.393 10.946 11.360  0.839
21.33 37.00 0.576  3.529 15.601 17.117  0.852
22.03 38.37 0.574  3.690 - - -
22.73 39.93 0.569  4.068 - - -

* Percolation limit p’ ~ 22.8 %, Apercol = 40.2 %

22.90 40.41 0.567  4.407 12.511 9.673 0.707
23.78 42.31 0.562  4.331 8.666 6.668 0.699
30.42 52.01 0.585 3.891 6.607 4.365 0.652
41.25 63.23 0.652  3.327 7.112 3.671 0.582
52.08 75.99 0.685 2.606 9.397 3.267 0.478
79.17 89.38 0.886 1.677 19.167 3.034 0.322
96.50 98.40 0.981 0.637 127.513 2.895 0.126

This condition seems reasonable in the context of asperity-
based models: non-interacting asperities, which contact
only at their tips of constant curvature (circular or elliptic).
In this case, the slope of the contact pressure tends to
infinity at contact edges, which ensures the PDF at each
asperity of the form (12) and validates the boundary con-
dition (17) [12, 18]. In Persson’s model, however, one
moves from the full contact toward partial contact by
decreasing the external pressure to finite values. In this
process, the local contact pressure reaches zero at valleys
before they loose the contact. But when a valley is ready to
escape contact, locally the PDF of contact pressure in the
limit of zero pressure is similar to a PDF of a wavy surface
at full contact Eq. (14). Thus, the PDF of contact pressure
at every contact opening must be nonzero, and the
boundary condition (17) may not be fully justified. More-
over, we suggest that this perturbation in the boundary
condition exists not only at opening valleys but also at any
junction between contact spots. Since in Persson’s model,
the roughness spectrum is continuous, for any pressure, an
infinite number of opening points exists, whose density
depends on Nayak’s parameter [20], root mean squared
surface gradient, effective elastic modulus and applied
pressure. We suggest that Persson’s model could be

strengthened by replacing the boundary condition (17) by a
pressure-dependent positive function.

10 Conclusion

Revisiting a problem of squeezing an elastic wavy surface,
which seemed to have been thoroughly addressed about
three decades ago [13], we discovered several notable
transitions in mechanical and geometrical quantities. These
transitions are connected with the shape change of the
contact area. In particular, the loss of shape convexity and
the consequent merge of contact zones result in the local
maximum and minimum of the mean contact pressure,
respectively.

The percolation limit, at contact area fraction ~40.2 %,
separates two different regimes in the shape of the
probability density (PDF) of contact pressure: without and
with a singular peak. We found that at full contact the
PDF is described by an incomplete elliptic integral of the
first kind, and that the value of the PDF of zero pressure
is nonzero. We suggested that a finite probability of zero
pressure may also exist at junctions between contact
zones. This has important implications for contact of
random rough surfaces, for which any detachment point
(and possibly any junction point) results in a nonzero PDF
of zero pressure. This finding might help readdress the
boundary condition used in the extension of Persson’s
model, which assumes a zero PDF at zero pressure for
partial contact.

We analyzed as well the perimeter and compactness of
the shape of contact area, which displayed interesting
transitions close to the percolation limit. These are delicate
to measure due to the pixelated shapes obtained in
numerical simulations and experimental measurements.
Thus specific techniques and correction factors have to be
developed for this purpose.

It will be of interest to reiterate the analysis for different
geometries and to consider nonlinear materials, adhesive
and frictional forces.
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Appendix 1: Probability Density Function of a Wavy
Surface

To obtain the PDF of the contact pressure for the case of
full contact
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p =1+ cos(2nx/2) cos(2my/ 1)

we use the following observation. If for a given pressure, we
express the iso-pressure curve as y = y(x, p), then the area
between two iso-curves y(x,p) and y(x,p + dp) would be
proportional to the increment of the probability density of
the contact pressure P(p, p + dp)dp (see Fig. 12). At the full
contact p € [0, 2]. Then, the iso-pressure curve is given by:

A s
=_——arccos| ——— |.
T cos(2mx/A)
The area under this curve in the range x,y € [0; 1/4], i.e
for p € [1;2] may be expressed as:

(18)

#-arccos(p—1)

. A p—1
A(p) = 7 2rccos <W> dx (19)

The differential of the probability density is then

o A(p) —A(p + dp)
P(p,p+dp)dp = ———————,
0
where Ay = 4>/16 is the considered area. In the limit dp —
0 we obtain
. 1 dA(p)
P(p)=———2+
A() dp
Substituting the integral form (19) in this expression
enables us to evaluate this derivative using the differenti-
ation under the integral sign'?

£ arccos(p—1)

w2 &
b 2 : L
p n 0 cos(2mx/A)4/1 — %
#arccos(p—1)
e =
p—
arccos(p—1)
‘_4n2\/§177 / \/T
-P
_ LF arccos(p l)é
w-r V)

(20)

where F(/, k) 1 — k2sin®(¢) de is the incomplete

fl/

elliptic integral of the first kind. So the probability density

12 Differentiation

under the integral sign:
b(x) dax) b(x)df( 9
X
dz(jx];XIdt_f(Xb()) (xa())dxt({)dxdt

@ Springer

of the contact pressure for p € [1;2] or equivalently for
{x,y} €[0;m/4] is

4F<arccos(p—1 1/\/2p — p)
V2P —p?

To extend it to a periodic domain x,y € R and for
p € [0;2], one needs simply to take the absolute value of
the argument in arccos and divide the PDF by a factor of
two

P(p) =

F(arccos(|1 — D 1/\/2p —ﬁZ)
? /Zﬁ — I’)“Z
This expression is depicted in Fig. 13 and compared with
numerically evaluated probability density of a wavy sur-

face computed on the grid of 2 x 10% equally spaced points
in the region {x,y} € [0;7/4] using 500 bins.

(21)

Appendix 2: Data

In Table 1 some numerical results are presented (pressure,
area and perimeter) as well as coefficients of Gielis for-
mula (5) that fit the corresponding area shape.
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