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Summary- -A complete solution in closed form to the elastic contact of  a one-dimensional sinusoidal 
surface with a flat surface was presented by Westergaard in 1939. This paper is concerned with the 
elastic contact of  a two-dimensional sinusoidal surface with a flat. In this case the stress distribution 
within the elastic solids is three-dimensional. As the load is increased the contact areas change in shape 
from being circular to square and finally leave a circular region of  no contact when the waves are 
almost squashed flat. The problem is solved in general using a numerical method due to Kalker, but 
asymptotic solutions in closed form have been found for light loads and also for heavy loads at which 
contact is almost complete. The variation of the mean separation with load, which determines the 
volume of  the space trapped between the two surfaces, is also found. 

I N T R O D U C T I O N  

The problem of the contact of elastic bodies whose nominally flat surfaces possess a one- 
dimensional wave of small amplitude, has received full attention. Westergaard[1], in 
pioneering the use of complex variables in two-dimensional elasticity, produced solutions for 
the contact pressure and area from first touch to full contact. Much later Dundurs et al. [2], 
using Fourier analysis in a stress function approach, produced a series solution to the same 
problem. In Russia, the complex potential method of Mushkelishvili has been applied to the 
problem by Kuznetsov [3]. The methods used by Westergaard and Kuznetsov are necessarily 
two-dimensional and the extension of the Dundurs approach to the three-dimensional 
problem of the contact of bodies which have two-dimensional waviness is not obvious. 

The difficulty of the three-dimensional problem lies in the fact that the shape of the contact 
area is not known a priori. In the two-dimensional case, contact occurs over a band whose 
width varies from zero at first touch to one wavelength at full contact and the problem may be 
inverted to find the stress and deformation associated with a given contact width. However, 
even for a simple isotropic bi-sinusoidal surface, we are unable to predict the shape of the 
areas of contact. (The photographs of such contacts in Fig. 9 suggest why.) The contact areas 
are approximately circular at light load, become approximately square at higher load and 
eventually only small circular areas remain out of contact. With contact patch shapes varying 
in such a way an analytical solution to the problem seems improbable. 

However, asymptotic solutions can be found for early contact and for nearly full contact. If 
the loading is light, the small areas of contact behave as independent Hertz contacts, which 
enables one asymptotic solution to be found. At the other end of the scale, near complete 
contact, the areas of no-contact, which are approximately circular, behave as independent 
'penny-shaped cracks'. The radius of these circular regions can be calculated using fracture 
mechanics, which enables a second asymptotic solution to be found. 

The numerical procedure we shall adopt is due to Kalker [4, 5], who showed that a unique 
solution to the pressure distribution and contact area in a frictionless contact can be found by 
minimising the total complementary energy, subject to the pressure being everywhere greater 
than or equal to zero. The total complementary energy can be written as 

F=CE+fsP(h-~)dS ,  . (1) 

where C E is the internal complementary energy of the two deformed bodies, p is the contact 
pressure, h the gap between the surfaces before deformation, d; the approach of two bodies 
and S the surface area. For linear elastic solids the internal complementary energy is 
numerically equal to the stored elastic strain energy, which is given by 

C E = g E --  ~ p (Uz l  h- Uz2)dS,  (2) 
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where uzl and uz2 are the normal displacements at the surface of  each body. In the absence of  
friction at the interface the displacements uzl and uz2, under the action of the mutual contact 
pressure, are in ratio of  the reciprocals of  the plane-strain moduli of  the two bodies 
(1 - v2)/E1 and (1 - v~)/E2. We can therefore simplify equations (2) et seq. by replacing uzl 
and uz2 by u,, which may be thought of  as the displacement of  an elastic body having a plane- 
strain modulus E* in contact with a rigid surface, where E* is defined by 

1 1 - Vl: 1 - v~  
- -  t- 

E *  E1 E2 

Equations (1) and (2) were proposed by Kalker for the solution of problems in which 
contact is confined to a small closed region of  the surface of  an elastic half-space. In our case, 
where the load extends over the whole surface, the displacements u~ in equations (1) and (2) 
become unbounded. This difficulty will be overcome by subtracting the mean pressure p from 
the pressure distribution p(x, y) and the mean displacement ~z from the displacements 
u~(x, y). This procedure is effective because sinusoidal components of  the pressure 
distributions give rise to sinusoidal components of  surface displacement which all have a zero 
average. 

For the case of  solids having two-dimensional wavy surfaces we can represent the pressure 
distribution p(x, y) by a double Fourier series in x and y. The coefficients of  the terms of the 
series are those which minimise the complementary energy function F of  equation (1), subject 
to p(x, y) >>, O. As F is a quadratic function, minimisation may be carried out by the use of  
quadratic programming which is now a well developed numerical technique. 

In order to check the method and to assess the number of  terms in the series required to 
give an acceptable result, Kalker 's method was first applied to a one-dimensional wavy 
surface in contact with a fiat. 

The contact of  two surfaces, each having one-dimensional waviness but pressed together 
with the waves at right angles, is equivalent to the contact of  a two-dimensional wavy surface 
and a flat plane. This arrangement has been investigated experimentally, with encouraging 
agreement between the numerical and experimental results. 

ONE-DIMENSIONAL WAVY SURFACE 

We consider here the contact of two semi-infinite solids which, when just touching without load, have a gap 
between their surfaces given by 

27tx 
h(x) = l - c o s - - .  (3) 
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FIG. 1. Contact between a flat and a wavy surface (a) Unloaded, p = 0; (b) complete contact, ~ = p*; 
(c) partial contact, ,~ < p*. 
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This is the situation when one surface is flat and the other, though nominally flat, has sinusoidal profile o f  amplitude 
A and wavelength ). (A ,~ ).). The surfaces first touch along parallel lines at the crests of  the waves. As the surfaces are 
pressed together by a mean pressure ~ the lines expand into strips of  width 2a (Fig. 1). 

The Westergaard solution 
Westergaard [1] showed that the periodic pressure distribution 

2~ cos ~P 
p (x) [sin 2 ~o - sin 2~.] 1/2. cos • > cos ~ ,  (4) 

sin 2 q ' ,  

gives rise to periodic surface displacements 

(1 - v2)p). 
uz (x) 2 cos 2~F + C. cos ~P > cos ~P, (5a) 

nE sin W, 
and 

(1 V2) D). I -  

[ cos2U, ' + 2sin~P (sin2~P - sin 2 ~F,)l/2 
u~.(x) nE-sin-~,  

I 

- 2sin2~, ?n { sin~F + ( s i ~ s i n 2 ~ " ) l / 2  } ] + C, cos~ ~< cos~Po, (5b) 

where • = nx/)., ~ ,  = ha~)., p is the mean pressure over the whole surface and C is a constant related to the datum 
from which the displacements are measured. Where the two surfaces are in contact, (0 ~< Ix[ ~< a), 

u,l + u,2 =-- uz = t ~ - h ( x ) .  (6) 

The displacements of  equation (5a) satisfy this relationship for two surfaces whose initial gap is given by equation (3) 
provided that 

rtE*A 
= sin2W,. (7) 

2 

Complete contact will be achieved if ~ >/p*, where p* = (;rE*A/).). 

Asymptotic solutions 
At light loads the deformation at the crests of  each wave should be independent and given by the Hertz theory of  

line contact. The load P carried by unit length of  each crest is ~A and the curvature 1/R of  a crest is 47r2A/). 2. 
Substituting these values in the Hertz equations for line contact, i.e. into a 2 = 4PR/nE*, gives 

p / p *  = (~a/~) ~ = v ~ ,  (g) 

which is the limiting form of  (7) for ~P, small. 
At the other limit, when ~ ~ p*, only a small strip of  width 2b ( ,~ ).) remains out of  contact, where b = 2/2 - a. An 

asymptotic expression for b can be found by regarding the no-contact zone as a pressurised crack of  length 2b in an 
infinite solid. The contact pressure in the no-contact zone is, of  course, zero, but it can be thought of as the 
superposition of  the pressure necessary to maintain the surfaces in contact, given by 

p(x) = p* [1 + cos (2nx/).)] 

and an equal negative pressure acting on the surface of  the 'crack' (a ~< x ~< b). Provided b ,~ )./2 the sinusoidal 
pressure within the crack may be approximated by the parabolic form: 

p (x') ~ (p* - p~ - 2n 2 (x'/).) 2 p*, (9) 

where x' = x - )./2. Since the interface has no strength the 'crack' will open until the stress intensity factor at its ends 
falls to zero. The stress intensity factor at the ends of  a pressurised crack of  length 2b is given by (see Paris and 
Sih [6]) 

P h  

= ._I-p(x,)t + dx'. (,o) 

Substituting p(x') from (9), integrating and equating K I to zero gives the length of  the no-contact zone to be 

hi). = (llTt)(1 - ~lp*)~12, (11) 

which is the limit of  equation (7) as ~ ~ p*. 

The numerical method 
We first separate the pressure p(x) and the displacement u, (x) into their mean values pand  if, and their deviations 

from the mean p' (x) and u',(x). The deviation in pressure from the mean, normalised with respect to p*, is then 
represented by the Fourier cosine series: 

p" 
Ai cos (i$), (12) 

P* P* i=a 

where q~ = 2nx/2 and p* = hE*A/).. The corresponding surface displacement is given by 

u'~ - u ~ - u z  = A ~ (Ai/i)cos(idp), (13) 
i=1 

where ~, is the mean displacement. Its value is indeterminate since it depends on the choice of  datum for 
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displacements, but this difficulty can be circumvented as shown below. From equation (2) we get 

1 
C E = U E = ~pHz-i-U' E , (14) 

where 
1 {'~ nE*A 2 " 

U'E=2 Jo p'u'~dx= ~ ~- (A~/i). (15) 
i = l  

For a given value of p, ~, is constant and independent ofp',  so that the term ½pH, is constant and can be ignored in the 
minimisation process. Similarly, 

The first term in this expression is also constant and the second term is zero. For the profile defined by equation (3) we 
have 

p'hdx = p*A (1 -cos4~) --  Aicos(iq~ld~b 
i = l  

= _ n A2E, A~. (16) 
2 

Substituting (14) and (16) into equation (1) and ignoring the constant terms associated with p and Hz we obtain a non- 
dimensional object function f '  defined by 

2F' 1 ~ 
f '  - nA2e * 2 ~ (A~ / i ) -A , .  (17) 

i = l  

The coefficients A i are required to minimise this function subject to the condition that p I> 0, i.e. that 

Z Aicos(i~b) ~> -p/p*,  for all values of  4~. (18) 
i = 1  

The object function f '  can be minimised by quadratic programming. The 'constraint region', in which the 
constraint represented by equation (18) applies, is a complete wavelength but, in view of  the symmetry about ~ = 0, it 
may be restricted to the region 0 ~< q~ ~< n. Both the number of  terms n in the Fourier series and the number of  
constraints m (i.e. the number of  points at which equation (18) must be satisfied) must be chosen. If the points of  
constraint are equally spaced through the region, the highest harmonic A, cosn~ will be defined by m/n points per 
half-wavelength which, in general, should not be less than 3. Clearly the running time for the program increases with 
n and m. The independent variable of  the problem is p/p* which varies from zero at first touch to 1.0 at complete 
contact. 

Pressure distributions for different values of p/p* have been computed using a standard quadratic programming 
routine based on the method of  Beale [7]. The influence of  varying the values of  n and m was investigated 
(Higginson [8] ) and results for n = 10, m = 26 are shown in Fig. 2. The pressure distribution derived by the method 
of Dundurs et al. for p/p* = 0.4 is also shown in Fig. 2. The accuracy is comparable with that obtained by quadratic 
programming; the main difference lies in the small negative pressures which are not excluded in Dundurs' method. 

As the Westergaard solution shows, the pressure gradient is, in fact, discontinuous at the edges of  the contact 
strips. It is inevitable that this discontinuity is not well represented by a truncated Fourier series, so that the 
numerical method does not lead to an accurate definition of  the true contact area. However, if for the number of 
terms chosen (n = 10), a line is drawn at p/p* = 0.1 (as shown by the chain line in Fig. 2) its intersection with the 
numerical pressure curves gives a good estimate of  the true position of  the edge of  contact determined by the 
Westergaard solution. 

The trapped volume 
The variation of the volume of the vacant space between the two surfaces as the load is increased is determined by 

their mean separation ~ and is of  interest in connection with lubricated surfaces and with face seals. When the 
surfaces just touch they have a mean separation A. Under load the flat contacting surface moves through a 
displacement 6 equal to the compression u: (0) of  the crests of  the waves. At the same time the mean level of  the wavy 
surface displaces by ff~. Thus the mean separation of  the surfaces decreases by: 

,~' ~ 6 - ~, = uz (0) - H~ = u'~ (0) 

= A ~ (A,/i). 
i = l  

Thus the current separation ~, as a fraction of the original separation A, may be expressed by 

G =- ~ = 1 - 3 ' / A  = 1 - ~ (A,/i). (19) 
A i = l  

Integration of  equation (5) has been shown by Kuznetsov [3] to lead to the expression: 

G = 1 - (p/p*) [1 - In (p/p*)]. (20) 

The values of  G obtained by the numerical method from equation (19) are compared with this exact result in Fig. 3. 
The agreement is very close. 
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FIG. 2. Pressure distribution between a fiat and a one-dimensional wavy surface. 
( - - - )  Numerical solution by quadratic programming. 

( ) Analytical solution, Westergaard [1]. 
(---.-) Numerical solution, Dundurs  et al.[2]. 
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FIG. 3. Variation in mean separation 0 with mean pressure p for a one-dimensional wavy surface of 
amplitude A, ( ) Equation (20), Kuznetsov [ 3 ] ; 0  numerical solution from equation (19). 

T W O - D I M E N S I O N A L  W A V Y  S U R F A C E  

In this section we consider the contact of a fiat plane with a two-dimensional isotropic wavy surface such that the 
undeformed gap is given by 

h(x, y) = A El - cos (2nx/,1)cos (2ny/,1)]. (21) 

A unit cell of  this surface is shown in Fig. 4. The surfaces first touch at the crests of the waves which are located at 
points (0, 0) and (,1/2, ,1/2). The troughs are at points (,1/2, 0) and (0, ,1/2); the mid-point (,1/4, ,l/4) is a saddle point. If  
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FiG. 4. Contact o f  flat with two-dimensional wavy surface: unit cell. © = crest; × = trough; 
+ = saddle point. From symmetry the constraint region can be restricted to the triangle ABC. 

the mean pressure pis  sufficient to close this gap completely so that the surfaces are in contact everywhere, then the 
pressure distribution takes the form (see Appendix 1). 

p (x, y) = -p + p* cos (2nx/2) cos (2ny/2), (22) 

where p* = x/(2)nE*A/2. If -p < p* only partial contact will occur. 

Asymptotic solutions 
Although an exact solution cannot be found for the contact of  two-dimensional wavy surfaces, asymptotic 

solutions may be obtained in the same way as for a one-dimensional wave. At light loads the contact area will be 
approximately circular and the Hertz theory can be applied. The nominal surface area Ao supporting each point of 
contact is a square of  side 2/x/2 so that the load carried by each point of  contact is -p22/2 and the curvature is again 
4n2A/2 z, which gives the ratio of  actual to nominal area of  contact to be 

A 2~a 2 ~{3--~2/~ 
Ao 22 = ~ P*1 ' (23) 

When contact is almost complete, the regions of  separation are approximately circular and behave like pressurised 
'penny-shaped' cracks of  radius b. As before the value of  b is found from the condition that there should be no 
singularity in stress at the edge of  the crack (see Appendix 2). In this way the real contact area A is found to be given 
by 

1 - A T = ~ T - = ~ n n  1 -  . (24) 

These asymptotic solutions are plotted in a graph of  A/Ao as a function of  -p/p* in Fig. 7. 

Numerical method 
Following the same approach as for a one-dimensional wave we assume that, under general conditions of partial 

contact, the deviation of  the pressure from its mean value can be expressed by the double Fourier cosine series: 

p' 
= P--P = ~ Z A,j cos(i4,)cos(j0), (25) 

P* P* /=o i=o 

where $ = 2nx/2, 0 --- 2ny/2; i and j  are integers and Aoo = 0. p* is the value of  mean pressure, given above, which 
will just bring the surfaces into complete contact. We now apply Kalker's method. It is shown in Appendix 3 that the 
complementary energy function of  equation (1) can be expressed in terms of  the Fourier coefficients of equation (25) 
by 

4F' 1 2 *  A/~ 
f '  = ~ p * A  ~/2 (i 2 +j2)1/2 Aa l, (26) 

where Y-* denotes I:~'= o Y~=o except that the term i = j = 0 (which is represented by the term -pip* on the left-hand 
side of  equation 25) is omitted, and the remaining terms in which i --- 0 or j  = 0 are doubled. Values of the coefficients 
Ais are sought to minimisef ' ,  subject to the pressure being everywhere positive, i.e. subject to 

n n 

~ Aijcos(idp)cos(jO ) >! -'p/p*, for all values of  0 and 4~. (27) 
i=O j =O 

(where Aoo = 0). 
In practice harmonics up to and including the ninth were used. Referring to the region shown in Fig. 4, the 

pressure distribution must be symmetrical about the diagonals, so that the coefficients A o for which (i + j )  is odd 
must be zero, and A~j = Aj~. If these requirements are imposed on the unknowns ab initio the number of  unknowns 
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becomes 29, and the constraint region over which equation (27) must be satisfied may be restricted to the triangle 
A (0, 0), B (0, 7t), C (lt/2, 7t/2). Adopting the same criterion of  3 points per half-wave, the number of  constraint points m 
was chosen to be ¼ x 28 x 28, i.e. 196. The computing time depends on n and m and also upon the number of  active 
constraints in the solution. Earlier results not using the condition A u = Aj~ required 49 unknowns, 378 constraints 
and took about twenty-times longer to compute. 

Solutions were computed for values of  p/p* from 0.1 to 0.9 in steps of  0.1 together with p/p* = 0.01, 0.05. A sample 
of  the pressure distributions, computed along the dotted lines in Fig. 4, are shown in Fig. 5. 

The waviness in the pressure distributions in Fig. 5, like those obtained by the numerical method in Fig. 2, is 
presumably due to truncation of the Fourier series. As expected, these spurious fluctuations become less as contact 
becomes more complete and the pressure distribution becomes more nearly sinusoidal. 

In order to estimate how the contact area varies in shape and size as the load is increased the same procedure has 
been followed as that shown in Fig. 2 for a one-dimensional wave. The edge of  contact is taken to be at the point 
where pressure falls to 0.1 p*. Contact areas determined in this way are drawn for different values of  p/p* in Fig. 6. 
The circular areas of  contact and no-contact given by the asymptotic equations (23) and (24) when p/p* = 0.1 and 0.9, 
respectively are shown dotted. The areas of  contact measured from Fig. 6 are plotted against ~/p* in Fig. 7. The 
numerical results so found are reasonably consistent with the asymptotic equations for ~ ~ 0 and for p ~ p*. 

Trapped volume 
As in the case of  one-dimensional waves the variation with load of  the volume of  the space between surfaces is 

given by the variation in their mean separation. From Appendix 3 we have 

6' = u: (O, O) = A x/2 ~ ~ Au 
e x c l u d i n g  ( i 2  + j 2 ) t / 2 '  

so that i =j = 0 

Au (28) G = I - x / 2 ~  ~. (i2+j2)i/2. 

This relationship is plotted in Fig. 8, 
At light load the contact conditions at the crest of  each wave can be found from the Hertz theory. Contact occurs 

over an approximately circular area of  radius a given by equation (23). The compression of a crest, relative to the 
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F]o. 6. Variation of  contact areas (shown shaded) with p/p*, found by putting p/p* = 0.1 in Fig. 5. 
( . . . . . .  ) Asymptotic results for p/p* = 0.1 and 0.9. 
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FIG. 7. Variation of real/apparent contact area. • Numerical results by quadratic programming; 
o experimental results; ( . . . . .  ) Asymptotic solutions. 

mean level of  the surface 6' ( = u'~ (0)), can be obtained from the difference between the central compression of  a Hertz 
contact 6 = a2/R, and that due to the average pressure p acting on a square of side 2/x/2. In this way an asymptotic 
expression for G at light load (~ --, 0) is found to be 

6' 1 1 (3n2p/p,)2/3 + [41n(x/5 + 1)] (/3/p*). (29) G=I-s= -5 
The asymptotic relationship for ,~ -+ p* is obtained from the volume o f a  pressurised crack. It is shown in Appendix 
2 that 

G = ~ [1 - p/p,]S/z. (30) 

The asymptoti~ equations (29) and (30) are compared with the numerical solutions obtained from equation (28) in 
Fig. 8, and it is clear that between them they provide a highly satisfactory description of  the computed results. 

E X P E R I M E N T A L  

To observe the variation in shape and size of  the contact area when two-dimensional wavy surfaces are in contact, 
and to obtain an experimental check on the numerical solutions, a simple apparatus was constructed. A block of 
perspex approximately 80 x 80 m m  had a one-dimensional wave of amplitude 0.24 m m  and wavelength 40 m m  
accurately machined on one surface and was subsequently polished. This block then acted as a mould to cast a similar 
block o f  silicone rubber. The wavy surfaces of  the two blocks were pressed into contact with the waves at right-angles 
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FIG. 8. Trapped volume ratio: x numerical solutions from equation (28); ( . . . .  ) asymptotic solutions, 
equations (29) and (30). 

so that the initial gap between the two surfaces was given by equation (21) in which A = 0.48 mm and 2 = 40~/2 m m .  
The value of E/(I - v  2) for the rubber block was found to be 2.64 N ram- '  from measurements of the c o n t a c t  

diameter when a spherical lens was pressed into a flat surface. Hence p* = ~(2)nE*A/2 = 0.0995 N ram-2. The 
changing shape and size of the contact area as the mean contact pressure was increased from 0 to p* could be viewed 
through the perspex block and is shown by the photographs in Fig. 9. (The bright spots on the photographs are small 
holes drilled in the perspex block to release trapped air.) The general agreement between the contact shapes in the 
photographs and the theoretical shapes drawn in Fig. 6 is very satisfactory. Initially the contact spots are circular; 
they become approximately square when p/p* ~- 0.25 and small circular regions of separation remain when p/p* 
exceeds about 0.6. The photographs were enlarged, the contact areas measured by planimeter and the experimental 
values added to Fig. 7 where they are seen to compare well with the theoretical curve. 

CONCLUSIONS 

We have examined the contact  o f  two elastic half=spaces one o f  which has a bi=sinusoidal 
i so t ropic  wavy surface whose ampl i tude  A is small  c o m p a r e d  with its wavelength 2. The  
contac t  pressure  d i s t r ibu t ion  was represented by a doub le  Four i e r  cosine series and  a 
var ia t ional  principle o f  m i n i m u m  complemen ta ry  energy due to Ka lker  was used to 
de te rmine  the Fou r i e r  coefficients. 

The me thod  was appl ied  first to a one-d imens iona l  wavy surface, where the results  could  be 
c o m p a r e d  with the analyt ical  solut ion o f  Westergaard .  Tak ing  10 terms o f  the Four i e r  series 
it was found  that  a sat isfactory representa t ion  o f  the contact  pressure and contac t  area  could  
be obta ined.  

Wi th  a two-d imens iona l  wavy surface a double  Four i e r  series with 100 terms was employed  
to define the pressure d is t r ibu t ion  (in fact, symmet ry  shows that  50 o f  the coefficients must  be 
zero and  that  pairs  o f  the others  are equal  so that  the number  o f  unknowns  is reduced to 29). 
The mean pressure ,~ required to br ing the two surfaces into comple te  contact ,  deno ted  by p*, 
is shown to be ~ ( 2 ) n E * A / 2 .  The  contact  area  was found  to be circular  at  l ight loads,  as 
expected. It becomes a lmost  square when p/p* "~ 0.25 but,  when ~/p* exceeds abou t  0.6, the 
remaining  area  o f  no-contac t  becomes circular. The mean separa t ion  o f  the two surfaces, 
which governs the volume o f  the space between them, is also found by the numerica l  method .  

Equa t ions  in closed form have been ob ta ined  for  the area  o f  contac t  and  the mean 
separat ion:  (a) when the mean  contact  pressure is small  (~ ,~ p*); and  (b) when contact  is 
near ly  comple te  (t3--, p*). The  numerica l  results are consis tent  with these asympto t i c  
solutions.  

Measurements  o f  the contact  area  using a rubber  mode l  showed good  agreement  with the 
theoret ical  predict ions.  
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APPENDICES 

Appendix 1 
1. Elastic displacements due to a bi-sinusoidal distribution of surface pressure: p = p* cos nx cos fly 
This pressure distribution can be written 

1 
p = ~ p* [cos (ctx + ily) + cos (otx - ily)]. (A.I) 

Consider each term separately. For the first term rotate the axes through an angle 3, = tan-  t (il/ct), so that 

x' = x cos), + y sire, = (¢tx + ily)/(, 

where ( = (~2+ fl2)1/2 Similarly, for the second term, rotating the axes through an angle - 7  gives 

x" = tax -- ily)/~. 

From Westergaard [ 1 ], one-dimensional variation i,n pressure p* cos ( x' gives rise to normal elastic displacements of 
the surface 

u, = [2p* (1 - v2)/E(] cos~x', 

so that, by superposition, the pressure distribution of (A.I) gives 

u, = [p* (1 - v~)/E(] (cos~x' + cos~x") 

= [2p* (1 - v2)/E (~t 2 + ilz)l/2] cosetx cosily. (A.2) 

For isotropic wavy surfaces, whose initial separation h(x, y) is given by equation (21), ~t = fl = 2n/2. Hence for 
complete contact 

p* A/ x /  (2)nE* = A, 

so that the pressure distribution is given by 

p(x, y) = p + [ x/(2)ItE*A/2]cos (2nx/2)cos (2ny/2). (A.3) 

Appendix 2 
2. Asymptotic solutions for ~ ~ p*: The pressurised penny-shaped crack 
If p < p* complete contact can only be maintained by the application of  tension in the area where the pressure 

given by equation (22) is negative. In reality the surfaces will separate and the pressure fall to zero, which may be 
regarded as the superposition of  the tension necessary to keep the surfaces together and an internal pressure pushing 
them apart. The surfaces will separate such that there is no singularity in stress (tension or compression) at the edge 
of the contact region. This condition can be formulated mathematically by regarding the separated zone as a 
pressurised crack and finding the condition that the stress intensity factor K l at its periphery should be zero. 

If the separated zone is sufficiently small it will be circular in shape and can therefore be modelled as a penny- 
shaped crack of  radius b in an infinite elastic solid (see Fig. A. 1). The bi-sinusoidal pressure distribution of equation 
(22), in this region, is approximately paraboloidal so that we can write the pressure distribution in the crack as 

p(r) = (p* --p)--2n2p*r2/2 2, r <~ b. (A.4) 

A penny-shaped crack under the action of  a pressure p (r) = A. (r/b)" has been studied by Sneddon [ 10] who shows 
that the faces of the crack separate by 

, ,  2 ( l _v2 )bA.  ( ~ n ) ,  

O . ~ p l = - - - - ~  l + n / 2 ~  ' l.(p), (A.5) 
z /" 

where p = r/b. I. (p) is determined by the recurrence relation 

and 
(1 +n)l .  = (1 --p2)l/2 +np2 ln_ 2 

I0 = (1 _p2)1/2. 

I I  I I I / I I A g A  I I I I I I I  

~ b I_ b ] 

i =r 

FIG. A1. Penny-shaped crack of  radius b. 
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!iii ~ i 

P/P* = 0.024 p/p* = 0.08 p/p* = 0.14 

II 
j/p* = o.35 j/p* = o.ss j/p* = 0.76 

FIG. 9. Experimental contact areas (appearing light). Note that the axes of the photographs are at 45 ° 
to the x, y axes shown in Fig, 6. 
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The pressure distribution of  (A.4) comprises two terms: A o = (p* - p) and A 2 = - 2n2p*be/)~ z. Applying Sneddon's 
result (A.5) to this case, we find 

n = 0: 0!/(1/2)! = 21x/n, 

n = 2: I!/(3/2)! = 4/3x/n. 
Therefore, 

1 
12 = ~ ( 1  + 2 p 2 ) ( l - - p 2 ) l / '  

Substituting both these terms into (A.5) and adding gives the total separation to be 

g(p) = - - ~  2(1 - ~ / p * ) - ~  (1 +2p  2) (1 _p2)1/2. (A.6) 

For there to be no singularity in stress at the edge of  the contact region, the surfaces must separate smoothly, i.e. 
do~dr = 0 as p - .  1.0. For this condition to be satisfied the term in square brackets in equation (A.6) must vanish 
when p = 1. Hence the radius b of  the circle of  separation is given by 

4(7 )2 
- = 1 . ( A . 7 )  
3 p* 

The volume of  such small regions of  separation may be found by 

V = f~ 2nrg(r)dr = 2nb3 f~ pg(p)dp. (A.8) 

By substituting from (A.6) and (A.7) into (A.8) and integrating, the trapped volume as a ratio of  the initial volume is 
given by 

G A22/2 15n2 1 P*J  . (A.9) 

Appendix 3 
3. Complementary energy in terms of Fourier coefficients 
The deviation p' of  the pressure from its mean value p is represented by the double Fourier cosine series of  

equation (25). It follows from Appendix I [equation (A.2)] that the displacement produced by the pressure deviation 
p' may be written A,, 

excluding (i2 +j2)l/2 COS (iS) COS (j0). (A.10) 
iffij=O 

The strain energy U~ is given by 

(')';o';o 
fo" Since cos (kS) cos (iS) dS = 0 for k :p i 

= n  for i = k ~p 0 

= 2 n  f o r i = k = 0  
(and similarly for the 0 integration) we have 

u,, =p  , ,  x;  (i, +j,, , , , '  

where X* indicates that the term i = j = 0 is omitted, while other terms in which i = 0 o r j  = 0 are doubled. The 
second term in Kalker's function is 

fs  p' (h - 6) dS 

Clearly, 

which leaves 

p'6ds = 3 fp '  dS = O, 

p*A ~n ~ ~ Auc°s(iS)c°s(jO)(1 - c o s S c o s 0 ) d S d 0  
d O d 0 excluding 

i = j = 0  
/ '~2 2 

- - - p * A / ~ - - - }  n2Alt byorthogonality.  
\ Z n /  
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Putting C~ = U~, substituting into equation (1) and ignoring the constant terms associated with ~ and fiz gives 

f '  =_- p*A x/2 (? +fl)~.:2 A11. 

Values of the Fourier coefficients A o are required which minimise f' subject to the restriction 

P ~ Aocos(idp)cos(jO ) >1 - ~ ,  everywhere, 
i = 0  j = O  

where as before the term Ago is excluded. 
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