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Abstract We revisit the classic problem of an elastic solid

with a two-dimensional wavy surface squeezed against an

elastic flat half-space from infinitesimal to full contact.

Through extensive numerical calculations and analytic

derivations, we discover previously overlooked transition

regimes. These are seen in particular in the evolution with

applied load of the contact area and perimeter, the mean

pressure and the probability density of contact pressure.

These transitions are correlated with the contact area shape,

which is affected by long range elastic interactions. Our

analysis has implications for general random rough sur-

faces, as similar local transitions occur continuously at

detached areas or coalescing contact zones. We show that

the probability density of null contact pressures is nonzero

at full contact. This might suggest revisiting the conditions

necessary for applying Persson’s model at partial contacts

and guide the comparisons with numerical simulations. We

also address the evaluation of the contact perimeter for

discrete geometries and the applicability of Westergaard’s

solution for three-dimensional geometries.

Keywords Wavy surface � Elastic contact � Contact area �
Contact perimeter � Compactness of contact area �
Persson’s boundary condition � Probability density of

contact pressure

1 Introduction

Contact interaction between solids is affected by inevitable

roughness of surfaces. This roughness is linked with stress

fluctuations, friction, adhesion and wear of contacting

solids, as well as leakage and energy transfer through

contact interfaces. A two-dimensional sine wave surface is

one of the simplest models of periodic and continuous

surface roughness. This model has been considered in

many applications, including optical scatter [26],

mechanical contact [13], heat and electric transfer [17],

fluid flow slip conditions [8], and others. Although appar-

ently simple, finding the analytical solution for the

mechanical contact between an elastic solid possessing a

double sine wave surface with an elastic plane seems

improbable [13]. Since the last three decades, numerical

methods allow to overpass the limitations and complexity

of analytical methods and obtain solutions for arbitrary

geometries and boundary conditions. About thirty years

ago, Johnson et al. [13] studied in detail the contact

between elastic regular wavy surfaces. Although no closed-

form analytic solution was obtained, the question of

squeezing a wavy surface was considered fully addressed

and the results of [13] served as a reference for verification

of following numerical studies, see e.g. [17].

In this paper, we take a fresh look at this contact

problem and reveal some interesting features, which were

overlooked before. We show that such a simple example

undergoes some surprising transitions in the evolution of

contact area, contact perimeter, mean pressure and the

probability distribution of contact pressure. These results

have important implications for analytic models of rough

contact, including asperity-based models [3, 10, 11, 19, 27]

and Persson’s contact model [22, 23] (for a review, see [4,

31]). We also establish and discuss a closed-form solution
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for the probability density of the contact pressure for a

double sine wave function, which might help revisiting the

extension of Persson’s model to partial contact [24].

The paper is organized as follows. In Sect. 2, we set up

the problem. In Sect. 3, the classical results of Johnson,

Greenwood, Higginson are discussed and compared with

new numerical results in Sect. 4. The shape of the contact

area is analyzed in Sect. 5. We then discuss the compact-

ness of the contact area shape, the contact perimeter and

reveal associated geometrical transitions (Sect. 6). A

detailed study of the contact pressure spatial distribution is

provided in Sect. 7. In Sects. 8 and 9, the probability dis-

tribution of contact pressure is investigated and discussed

with respect to Persson’s model, respectively. The results

are summarized in Sect. 10. In Appendices 1 and 2, addi-

tional numerical data and the derivation of the probability

density for a double sine surface are given.

2 Problem Setup and Numerical Methods

Let us consider an elastic half-space (E1; m1 are the

Young’s modulus and Poisson’s ratio, respectively) with a

wavy surface (Fig. 1)

zðx; yÞ ¼ B cos 2px=kð Þ cos 2py=kð Þ ð1Þ

This surface is gradually pressed in frictionless non-adhe-

sive contact with a flat elastic surface ðE2; m2Þ by a pressure

p0 applied at infinity. We perform numerical simulations

using an FFT-based boundary element method (BEM)

[25].1 These simulations serve to find the evolution of the

contact area, contact perimeter and spatial pressure distri-

bution. The simulations are performed on a grid of n� n ¼
4096� 4096 points. The external pressure is applied in 200

load steps up to the pressure p� ensuring the full contact

between surfaces [13]

p� ¼
ffiffiffi

2
p

pE�B=k;

where E� ¼ 1=ðð1� m2
1Þ=E1 þ ð1� m2

2Þ=E2Þ is the effective

Young’s modulus.

We compute the contact area fraction A0 ¼ A=A0 or A0 ¼
A=k2 as the ratio of points in contact to the total number of

points.2 Computed in this way, the contact area fraction

converges to a continuous value as N tends to infinity.

3 Analysis of Johnson, Greenwood, Higginson

In [13], the authors derive two asymptotic solutions for the

considered problem. The first is applicable at infinitesimal

contact p0=p� � 1. It uses Hertz theory and neglects elastic

interaction between contact spots. The curvature at the

crest is 4p2B=k2, so the relative contact area at small loads

is given by

A0 ¼ p
3p0

8p

� �2
3

; ð2Þ

where p0 ¼ p0=p�.
Near full contact, when the entire surface is in contact

except a small circular region in the deepest valley, the

authors suggest an analogy with a pressurized ‘‘penny-

shaped’’ crack with no singularity in stress at the edge, it

gives

A0 ¼ 1� 3

2p
1� p0ð Þ ð3Þ

The same authors carried out numerical simulations using

an FFT-based boundary element method3 and performed

real experiments on a silicon rubber block put in contact

with a flat surface. The block dimensions are 80� 80 mm,

the wavelength k ¼ 40 mm and the amplitude

B ¼ 0:24 mm. Although such an experimental setup does

not represent a half-space with an infinite periodic wavy

surface, the obtained experimental results appear to be in

good agreement with numerical results and asymptotic

estimations (2) and (3). The ensemble of results obtained in

[13] is depicted in Fig. 2a and complemented by recent

numerical results [17]. All points describing the evolution

of the contact area seem quite accurate, and the authors of

Fig. 1 Simulation domain with a double sine wave surface, Eq. (1)

1 The original formulation of the FFT algorithm [25] contains some

errors. The most relevant is that the solution is shifted in Fourier

space by one wave number. For the current and previous studies [30,

31], we use a corrected version of this method, which was validated

on many cases.
2 The nominal contact area is A0 ¼ k2 as we carry out our simulations

on a surface k� k to make use of periodic boundary conditions. In the

following, however, due to symmetry, all results will be shown only

on a quarter of the simulation domain.

3 This method is quite similar to the one [25] used in this paper, both

are based on the Kalker’s variational formulation [15, 16].
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[13] judged that the number of data points was sufficient to

trace a master curve, which was assumed to be everywhere

concave. A similar concave master curve can be found

in [17, Fig. 6]. As shown in Fig. 2b, the aforementioned

authors underestimated the complexity of the contact area

evolution. Using a larger number of load steps, we reveal

that in a certain interval, the evolution of the contact area

may be a convex function of the contact pressure and

consequently the mean pressure �p ¼ p0=A0 becomes a non-

monotonous function of the external pressure and contact

area (see Fig. 3). Note that a trace of this convexity may be

guessed in the coarse data points from [13, 17], see Fig. 2a.

4 Contact Area Evolution

The contact area is evidently a monotonous function of the

pressure dA0ðp0Þ=dp0 [ 0, which is well approximated by

asymptotic (2) for infinitesimal and full4 contact by (3) (see

Fig. 4).

As mentioned, in the interval of intermediate contact

areas, we find a surprising deviation from the master curve

assumed in [13] (compare Fig. 2a, b). Inflection points

exist, changing the curve from concave to convex and back

to concave. In the considered case, the mean contact

pressure �p ¼ p0=A0 is a monotonously increasing function

if and only if the secant of every point of the curve A0ðp0Þ is

bigger than the tangent at this point, i.e.

A0

p0

[
dA0

dp0

: ð4Þ

This equation is satisfied both for light- and high-pressure

asymptotes, (2) and (3), respectively. It is also evident to

see that from Fig. 2b. The violation of condition (4)

necessitates inflection points, which can be found by

equating the terms in (4). This change in the evolution of

the contact area is connected with two transitions occurring

in the growth of the contact zone (see Fig. 5). The first

point corresponds to the moment when the contact area

looses convexity and forms a quasi-square shape. The

(a)

(b)

Fig. 2 Evolution of the contact area: (a) results from the literature

[13, 17]; (b) actual numerical results and the zoom on the transition

region in the inset

Fig. 3 Evolution of the mean contact pressure p0=A0 as a function of

the contact area fraction

4 The FFT-based method, which we use, fails to predict accurately

the contact area evolution near full contact A0’97 %. Thus, to

compare with the asymptotic solution near full contact (3), we used a

more accurate axisymmetric finite element model with discretization

6,400 points per wavelength (triangles in Fig. 4b).
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second point corresponds to the moment when two separate

contact zones merge. In contrast to the classic geometrical

overlap model [6], these transitions occur at different

pressures (and contact areas).

We would like to emphasize this surprising behavior of

the mean contact pressure. During the observed transition,

the local contact pressure at every contact point increases

only slightly, but the contact zone extends rapidly (see

Sect. 7), which results in the mean contact pressure drop.

5 Shape of the Contact Area

The shape evolution of the contact area (Fig. 5) is strictly

asymmetric for area expansion (small pressures) and gap

closure (close to full contact). In the first case, the contact

area rapidly looses circular form. Its shape can be

approximated by the Gielis ‘‘superformula’’ [9], which can

be written in the following form in polar coordinates,

taking into account all necessary symmetries:

.ðuÞ ¼ .0 cosðuÞj jkþ sinðuÞj jk
h i�1

q ð5Þ

In Fig. 5, we plot the boundary of the contact area at dif-

ferent pressures (see Table 1 in Appendix 1). Equation (5)

fits perfectly most of the numerically found boundaries,

except right before and after the junction moment. Tran-

sition states corresponding to convexity change in the

contact area evolution are shaded.

(a)

(b)

Fig. 4 Logarithmic plots of (a) the contact area evolution with

pressure compared with the asymptotic solution at small pressures and

(b) the non-contact area evolution with pressure deficiency compared

with pressurized penny-shape crack asymptotic solution near full

contact; triangles represent results obtained with an axisymmetric

finite element model, which appears to be more accurate near full

contact than the FFT-based model

Fig. 5 Shape of the contact area at different pressures; the contact

area grows from left bottom and right top corners toward the center

up to reaching the critical convex shape (shaded in light blue), right

after the shape looses convexity up to the reaching the junction

(corresponding contact area shaded in gray). These transitional shapes

correspond to the local maximum and minimum in mean contact

pressure (see inset in Fig. 2b); black points depict numerical results;

solid curves (red and orange) are the fits of Gielis formula (5); fit

coefficients determined by least mean square are given in Table 1

(Color figure online)
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6 Contact Perimeter, Compactness and Percolation

Limit

The ratio of the contact perimeter to the square root of the

contact area S0=
ffiffiffiffiffi

A0
p

is a measure of compactness of contact

spots, where S0 ¼ S=k is a normalized perimeter. Equiva-

lently, near the full contact, a more relevant quantity is the

measure of compactness of non-contact spots S0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A0
p

.

For a general case of N random contact spots with S0i;A
0
i

being the relative perimeter and area of i-th spot, this ratio

is

FðNÞ ¼ S0
ffiffiffiffiffi

A0
p ¼

P

i S0i
ffiffiffiffiffiffiffiffiffiffiffiffi

P

i A0i
p ¼

ffiffiffiffi

N
p hS0i

ffiffiffiffiffiffiffiffi

hA0i
p :

The ratio c ¼ FðNÞ=
ffiffiffiffi

N
p

that characterizes compactness of

contact spot(s) can be easily found for many simple forms:

for a rectangle with ratio of sides n

crectangle ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1=nþ 2
p

;

for an ellipse5 with ratio of axes n

cellipse �
ffiffiffi

p
p
ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1=nþ 2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3nþ 3=nþ 10
p

Þ;

for a square and a circle if one puts n ¼ 1:

csquare ¼ 4; ccircle ¼ 2
ffiffiffi

p
p

;

the circle is the most compact form, so c ¼ 2
ffiffiffi

p
p

is the

infimum compactness value.

The discrete contact perimeter Sd is computed as the

number of switches from contact to non-contact and vise

versa along vertical and horizontal lines of computational

grid points. Evidently, measured this way, the contact

Fig. 6 Evolution of the shape compactness c ¼ S0=
ffiffiffiffiffiffiffi

2A0
p

and

cclosure ¼ S0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� A0Þ
p

with increasing contact area; evolution of

c from circular to square-like shape is quite linear as well as the

evolution of cclosure from square-like shape to a circular region. The

change in compactness is linked with the variation of the mean

pressure (see inset in the lower part); the capital letters refer to

specific shapes, which are depicted on the right. To demonstrate the

importance of the correcting factor gðA0Þ (see Eq. (6)), we plot also

non-corrected compactness (dashed red and dash-dotted blue lines)

(Color figure online)

5 One can use Ramanujan’s approximation for the perimeter of an

ellipse with semi-axes a and b, S � pð3ðaþ bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3aþ bÞðaþ 3bÞ
p

Þ.
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perimeter for any discretization is always overestimated

except for the case of a square contact zone aligned along

the direction of discretization. In case of a circular contact

zone, the contact perimeter is overestimated by a factor

4=p, which is the ratio of the perimeter of a square of side

2a to the perimeter of a circle of radius a inscribed in this

square6.

The contact zone, being almost circular at light loads,

transforms at some stage into an almost square shape

aligned along vertical and horizontal lines of nodes. Next,

the contact areas loose convexity and merge together.

Thereafter, the perimeter’s shape becomes more and more

circular toward the full contact (see Fig. 5). To take into

account the effect of shape alteration on the measurement

of the contact perimeter, we introduce a piece-wise linear

correction factor gðA0Þ as a function of the contact area

fraction

gðA0Þ ¼

4

p
� A0

A0sq

4

p
� 1

� �

; if 0�A0\A0sq;

1þ
A0 � A0sq

1� A0sq

4

p
� 1

� �

; if A0sq�A0 � 1;

8

>

>

>

<

>

>

>

:

ð6Þ

where A0sq � 34:8 % is the area fraction corresponding to a

quasi-square shape of the contact area. This correction

ensures a more accurate estimation of the contact perimeter

in its continuum sense. The corrected normalized perimeter

is computed as

S0 ¼ Sd

gðA0Þn ;
ð7Þ

where n is the number of discretization points per wave-

length k. This correction is crucial as can be seen in Fig. 6,

where we plot non-corrected

cd ¼ Sd

n
ffiffiffiffiffiffiffi

2A0
p ;

and corrected compactness

c ¼ Sd

ngðA0Þ
ffiffiffiffiffiffiffi

2A0
p ¼ S0

ffiffiffiffiffiffiffi

2A0
p : ð8Þ

Indeed, the transformation from the initially circular shape

into a square-like shape should be reflected by compactness

c increasing from 2
ffiffiffi

p
p

to 4. But for a non-corrected mea-

sure, an inverse trend is observed, cd decreases from value

�4.5 to 4, which does not reveal the associated change of the

shape. It is evident, however, that for an arbitrary geometry

and multiple contact spots of different shapes, a correction

function cannot be worked out, thus a discrete measurement

of compactness may be employed [1, 2].7 Note that
ffiffiffi

2
p

appears in the denominator of Eq. (8) as for a simulated

periodic surface k� k one entire and four quarters of

asperities come in contact; at gap closure, we have four half

valleys that remain out of contact, so N ¼ 2. Note also that

for the considered case, to get a relevant measure of com-

pactness one should normalize by the contact area before

junction of contact zones (red circles in Fig. 6) and by the

non-contact area after the junction (blue circles in Fig. 6).

The compactness evolves almost linearly from infini-

tesimal contact state to square-like area shape at A0sq, the

slope dc=dA0 � ð4� 2
ffiffiffi

p
p
Þ=Asq. For closing gap, the clo-

sure compactness also decreases almost linearly starting

from the percolation area fraction A0percol � 40:2 %, so8

dc=dA0 � ð2
ffiffiffi

p
p
� 4:04Þ=ð1� A0percolÞ. The ratio of these

slopes, or simply the ratio of two area transitions,

s � Asq=ð1� ApercolÞ � 0:89, reflects the asymmetry

between the initial area evolution and the gap closure. For a

simple geometrical overlap model [6], in which the contact

area is found as a cut of a surface geometry by a plane,

sgeom ¼ 1 and evidently the percolation limit is

A0percol ¼ 0:5. Remark that the percolation limit for a simple

Fig. 7 Perimeter evolution and approximations given by Eqs. (9),

(10); transitional zone from loose of shape convexity to percolation

limit is shaded. The central dashed line is drawn to emphasize the

asymmetry in the curve

6 See also a discussion in [31].

7 The term contact perimeter, which is introduced in these references,

should not be confused with the contact perimeter employed here. By

contact perimeter, the author of [1, 2] understands the number of

boundaries between neighboring pixels that form the discrete shape.
8 We found the closure compactness close to the percolation limit to

be cclosure � 4:04. Regardless the fact that for ‘‘closing gap’’ regime,

the shape of the contact boundary cannot be approximated by a

square, its compactness measurement near the percolation limit can

be with a good accuracy approximated by c � 4.
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wavy surface (pressed against an elastic half-space) is

surprisingly close to the estimation A0percol � 42:5 %

recently obtained in simulations of elastic contact for

random fractal surfaces [5].

As the compactness c evolves approximately linearly

with area, then the contact perimeter may be assumed to

evolve as

S0 �2
ffiffiffiffiffiffiffi

2A0
p

ffiffiffi

p
p
þ 2�

ffiffiffi

p
p

A0sq

A0

" #

; A0\A0percol ð9Þ

before the percolation limit, and as

S0 �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�A0Þ
p

ffiffiffi

p
p
þ2:02�

ffiffiffi

p
p

1�A0percol

ð1�A0Þ
" #

; A0[ A0percol

ð10Þ

after this limit. In Fig. 7, the evolution of the contact

perimeter with contact area is depicted and compared with

good accuracy with Eqs. (9) and (10). The switch between

two regimes (area expansion and gap closure) is confined

within a narrow transition interval confined between the

convexity loss and the percolation of contact spots.

The perimeter (compactness) measurements are of

interest for characterizing topology of contact zones,

adhesion [21], numerical error estimation [31] and for

tunneling charge transfer [7, e.g., Ch. 23.4]. Moreover, for

a random rough surface, the rapid increase in compactness

may indicate a transition between an asperity-based contact

state, which implies separate elliptic contact regions, to a

more complex state with complex junctions between these

regions.

7 Contact Pressure

We plot the contact pressure distribution along a diagonal

and a horizontal line in Fig. 8, a and b, respectively. We

follow its evolution with increasing pressure. To verify the

importance of the two dimensionality of the problem, we

compare the numerical results along symmetry axes and

Westergaard’s solution obtained for a one-dimensional

sinusoidal profile [28]

pðx; aÞ ¼ 2p0

cos px
k

� �

sin2 pa
k

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 pa

k

� �

� sin2 px

k

� �

r

ð11Þ

Surprisingly, this solution fits accurately the contact pres-

sure distribution along the horizontal profile for the entire

range of pressures. It is not quite the case for the pressure

distribution along the diagonal line, especially close to the

junction between contact zones. It is worth noting that

along this line, the contact pressure rises faster than

Westergaard’s fit. The complete spatial distribution of the

contact pressure is depicted in Fig. 9.

8 Probability Density of Contact Pressure

In Fig. 10, we plot the evolution of the probability density9

(PDF) of normalized contact pressure P0ð~p; p0Þ under

increasing pressure p0, where ~p ¼ p=�p. The PDF experi-

ences a transition separating the regimes before and after

percolation. At the transition a singularity10 emerges in the

probability density at zero pressure and moves for

(a)

(b)

Fig. 8 Contact pressure distribution along (a) a diagonal line passing

through crests (y ¼ x) and (b) a horizontal line (y ¼ 0) at different

external pressures p0 ¼ 3; 7; 14; 20; 21; 22; 23; 24; 26; 29; 50; 66; 90 %.

Points correspond to the numerical results; red curves in (a) and (b) are

Westergaard’s solution, Eq. (11), for corresponding contact radius and

maximum contact pressure; orange curves in (a) are simply the fits of a

cosine wave. For a better visibility, only every fourth point is plotted

(Color figure online)

9 Hereinafter, the PDF of contact pressure is computed only in

contact regions; the integral of the PDF over all contact pressures is

equal to one.
10 We cannot show rigorously that the peak observed in Fig. 10 is a

singularity, but we can assume that if at full contact a singularity

exists, see Eq. (14), it is probable that it also persists at smaller

pressures.
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Fig. 9 Spatial distribution of

contact pressure at different

loads. The colors aide to

visualize the pressure

magnitude (Color figure online)
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increasing pressure p0 toward the center of the distribution

(see the bright zone in the figure).

At infinitesimal pressures, when the contact can be

approximated by non-interacting Hertzian asperities11, the

PDF of contact pressure of a single asperity can be

expressed as

Pðp; p0 � p�Þ ¼ 2p

p2
max

¼ 8

9

pA02

p2
0

¼ 8

9

p

�p2
; ð12Þ

where the maximal pressure pmax ¼ 3p0=2A0. The PDF of

the normalized contact pressure is

P0ð~p; p0 � p�Þ ¼ 8

9
~p: ð13Þ

At full contact, the PDF of contact pressure is simply

proportional to the PDF of a wavy surface. However, we

could not find in the literature a formula for this quantity.

We derived that at full contact (see Appendix 1)

P0ð~p; p0 ¼ p�Þ ¼ 2

p2

F arccosðj1� ~pjÞ; 1
ffiffiffiffiffiffiffiffiffiffi

2~p�~p2
p

	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p ;

ð14Þ

where

Fðl; kÞ ¼
Z

l

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2ð/Þ
q d/

is the incomplete elliptic integral of the first kind.

To evaluate Eq. (14) at ~p ¼ 2 or equivalently at ~p ¼ 0,

we replace the variable ~p ¼ 1þ cosðuÞ, so ~p! 2—when

u! 0þ, thus Eq. (14) can be rewritten as

P0ð~p; p0¼p�Þ¼ 2

p2

F u;1= sinðuÞð Þ
sinðuÞ �!

u!0þ

2

p2

F u;1=uð Þ
u

;

where the elliptic integral for u! 0þ can be approximated

as:

F u; 1=uð Þ �
Z

u

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2=u2
p dt ¼ u

Z

1

0

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p ds ¼ u

p
2
:

Thus, the PDF of the minimal and maximal contact pres-

sures in full contact is

P0ð0; p�Þ ¼ P0ð2; p�Þ ¼ 1=p: ð15Þ

Note that a general result may be obtained by computing

the PDF only in vicinity of the peak pressure, where it has a

curvature 4p2p�=k2 yielding P ¼ Nk2=ðA02pp�Þ, where N

is the number of asperities per normalization area A0. In

considering case the normalized amplitude p�=�p ¼ 1, A0 ¼
k2 and N ¼ 2, which also gives Pð0Þ ¼ 1=p.

In Fig. 11, we plot the PDF of contact pressure at dif-

ferent loads. At light pressures, p0 � p�, the PDF has to be

a linear function of the contact pressure. For p0 ¼ 0:002p�,
our numerical results are in good agreement with analytical

Fig. 11 Normalized probability density of normalized contact

pressure P0ð~pÞ for different external pressures p0. Numerical results

at light contact p0 ¼ 0:002p� and A0 � 1:2 % are in good agreement

with analytical prediction (13); at full contact, the numerical results

match Eq. (14). The singularity peak appears in the PDF at the

percolation limit, see also bright color region in Fig. 10

Fig. 10 Evolution of the normalized probability density of normal-

ized contact pressure P0ð~p; p0Þ. Linear evolution at infinitesimal

pressures changes to a concave PDF at moderate loads; at reaching

the percolation limit p0 � 0:23 (marked with an arrow) a singular

peak emerges and gradually shifts to higher pressure ~p at higher loads

p0; at full contact, the peak position reaches ~p ¼ 1, and there is a

nonzero PDF for all pressures including at zero pressure (see Fig. 11)

11 We recall that in this case, the contact pressure is

pðrÞ ¼ pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðr=aÞ2
q

.
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prediction (13). A small deviation is observed for higher

values of local pressure ~p. The numerical results are slightly

noisy due to a relatively small number of contact points

(�206,000). At higher pressures p0 the PDF looses monoto-

nicity, and, as commented earlier, at reaching the percolation

limit Apercol, a singular peak emerges at zero pressure ~p ¼ 0,

which gradually shifts with increasing pressures toward

~p ¼ 1, which is reached at full contact. We showed, Eq. (15),

that at full contact the PDF of zero pressure is nonzero

P0ð0Þ ¼ 1=p and it is in perfect agreement with numerical

results. We suppose that the PDF may be also nonzero at

percolation, when contact zones just start to merge and the

PDF singularity emerges at zero pressure; however, it is not

trivial to prove it analytically nor numerically.

9 Implications for Persson’s Model of Rough Contact

In contrast to asperity-based models [3, 4, 10, 11], Pers-

son’s model of rough contact does not rely on the notion

of asperities [22, 23, 29]. The author starts from a full

contact between surfaces under external pressure p0; if the

surfaces are perfectly flat, the PDF of contact pressure is

simply a Dirac-delta function PðpÞ ¼ dðp� p0Þ. When the

roughness with wave numbers from k1 to fk1 is gradually

introduced in the surface spectrum by increasing f, then

the PDF of contact pressure spreads out and takes a

Gaussian shape. Note that the full contact is preserved for

any f. To describe this evolution, Persson deduced a

diffusion equation for the PDF (acts as density of dif-

fusing medium) of contact pressure (acts as spatial

coordinate) depending on the variance of the surface

roughness (acts as time):

oPðp; fÞ
oVðfÞ ¼

1

2

o2Pðp; fÞ
op2

; ð16Þ

where

VðfÞ ¼ 1

2
E�m2ðfÞ ¼

pE�

2

Z

fk1

k1

k3UpðkÞdk

is the variance of the contact pressure depending on the

magnification parameter f, which controls the breadth of

the surface spectrum (see, e.g. [20, 31]), m2 is the second

spectral moment, E� is the effective Young’s modulus [14],

UpðkÞ is the radial power spectral density and k is the wave

number (see [18] for a comprehensive derivation of this

equation). However, as the considered surface is rigorously

Gaussian, an infinite pressure is needed to maintain full

contact for any f. To extend this model to finite pressures

and partial contacts, it was suggested to impose a boundary

condition to Eq. (16), which postulates that the PDF of

zero pressure is always zero [24]

Pðp ¼ 0; fÞ ¼ 0: ð17Þ

Fig. 12 Schematic figure explaining the computation method for the

probability density function of a wavy surface. Iso-pressure curves

yðx; ~pÞ and yðx; ~pþ dpÞ at different pressures ~p, the area between

curves is proportional to the probability density increment

Pð~p; ~pþ dpÞdp

Fig. 13 Comparison of the analytically evaluated (21) and numer-

ically evaluated (2� 108 grid points per k=4� k=4 and 500 bins)

probability density function of a wavy surface
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This condition seems reasonable in the context of asperity-

based models: non-interacting asperities, which contact

only at their tips of constant curvature (circular or elliptic).

In this case, the slope of the contact pressure tends to

infinity at contact edges, which ensures the PDF at each

asperity of the form (12) and validates the boundary con-

dition (17) [12, 18]. In Persson’s model, however, one

moves from the full contact toward partial contact by

decreasing the external pressure to finite values. In this

process, the local contact pressure reaches zero at valleys

before they loose the contact. But when a valley is ready to

escape contact, locally the PDF of contact pressure in the

limit of zero pressure is similar to a PDF of a wavy surface

at full contact Eq. (14). Thus, the PDF of contact pressure

at every contact opening must be nonzero, and the

boundary condition (17) may not be fully justified. More-

over, we suggest that this perturbation in the boundary

condition exists not only at opening valleys but also at any

junction between contact spots. Since in Persson’s model,

the roughness spectrum is continuous, for any pressure, an

infinite number of opening points exists, whose density

depends on Nayak’s parameter [20], root mean squared

surface gradient, effective elastic modulus and applied

pressure. We suggest that Persson’s model could be

strengthened by replacing the boundary condition (17) by a

pressure-dependent positive function.

10 Conclusion

Revisiting a problem of squeezing an elastic wavy surface,

which seemed to have been thoroughly addressed about

three decades ago [13], we discovered several notable

transitions in mechanical and geometrical quantities. These

transitions are connected with the shape change of the

contact area. In particular, the loss of shape convexity and

the consequent merge of contact zones result in the local

maximum and minimum of the mean contact pressure,

respectively.

The percolation limit, at contact area fraction �40.2 %,

separates two different regimes in the shape of the

probability density (PDF) of contact pressure: without and

with a singular peak. We found that at full contact the

PDF is described by an incomplete elliptic integral of the

first kind, and that the value of the PDF of zero pressure

is nonzero. We suggested that a finite probability of zero

pressure may also exist at junctions between contact

zones. This has important implications for contact of

random rough surfaces, for which any detachment point

(and possibly any junction point) results in a nonzero PDF

of zero pressure. This finding might help readdress the

boundary condition used in the extension of Persson’s

model, which assumes a zero PDF at zero pressure for

partial contact.

We analyzed as well the perimeter and compactness of

the shape of contact area, which displayed interesting

transitions close to the percolation limit. These are delicate

to measure due to the pixelated shapes obtained in

numerical simulations and experimental measurements.

Thus specific techniques and correction factors have to be

developed for this purpose.

It will be of interest to reiterate the analysis for different

geometries and to consider nonlinear materials, adhesive

and frictional forces.
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Appendix 1: Probability Density Function of a Wavy

Surface

To obtain the PDF of the contact pressure for the case of

full contact

Table 1 Evolution of the contact area fraction A0 and corrected

perimeter S0 (see Eq. (7)) with increasing pressure p0 ¼ p0=p�; q; k;q0

are the coefficients of Gielis formula (5) that approximate the shape

of the contact perimeter, coefficients are found by the least mean error

fit

p0ð%Þ A0ð%Þ p0=A0 S0 q k q0

0.20 1.23 0.163 0.558 128.439 3.857 0.177

2.00 5.90 0.339 1.244 12.374 3.081 0.382

5.75 12.55 0.458 1.861 7.520 3.524 0.547

12.75 23.20 0.549 2.632 6.285 4.750 0.718

16.25 28.51 0.570 2.972 6.929 6.094 0.779

19.23 33.29 0.577 3.261 9.001 8.927 0.825

* Contact area looses convexity p0 � 20:1 %, Asq � 34:8 %

20.28 35.09 0.578 3.393 10.946 11.360 0.839

21.33 37.00 0.576 3.529 15.601 17.117 0.852

22.03 38.37 0.574 3.690 – – –

22.73 39.93 0.569 4.068 – – –

* Percolation limit p0 � 22:8 %, Apercol � 40:2 %

22.90 40.41 0.567 4.407 12.511 9.673 0.707

23.78 42.31 0.562 4.331 8.666 6.668 0.699

30.42 52.01 0.585 3.891 6.607 4.365 0.652

41.25 63.23 0.652 3.327 7.112 3.671 0.582

52.08 75.99 0.685 2.606 9.397 3.267 0.478

79.17 89.38 0.886 1.677 19.167 3.034 0.322

96.50 98.40 0.981 0.637 127.513 2.895 0.126

Tribol Lett (2014) 56:171–183 181

123



~p ¼ 1þ cos 2px=kð Þ cos 2py=kð Þ

we use the following observation. If for a given pressure, we

express the iso-pressure curve as y ¼ yðx; ~pÞ, then the area

between two iso-curves yðx; ~pÞ and yðx; ~pþ dpÞ would be

proportional to the increment of the probability density of

the contact pressure Pð~p; ~pþ dpÞdp (see Fig. 12). At the full

contact ~p 2 ½0; 2	. Then, the iso-pressure curve is given by:

y ¼ k
2p

arccos
~p� 1

cosð2px=kÞ

� �

: ð18Þ

The area under this curve in the range x; y 2 ½0; k=4	, i.e.,

for ~p 2 ½1; 2	 may be expressed as:

Að~pÞ ¼
Z

k
2p arccosð~p�1Þ

0

k
2p

arccos
~p� 1

cosð2px=kÞ

� �

dx ð19Þ

The differential of the probability density is then

Pð~p; ~pþ dpÞdp ¼ Að~pÞ � Að~pþ dpÞ
A0

;

where A0 ¼ k2=16 is the considered area. In the limit dp!
0 we obtain

Pð~pÞ ¼ � 1

A0

dAð~pÞ
d~p

Substituting the integral form (19) in this expression

enables us to evaluate this derivative using the differenti-

ation under the integral sign12

dAð~pÞ
d~p
¼ k

2p

Z

k
2p arccosð~p�1Þ

0

dx

cosð2px=kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð~p�1Þ2
cos2ð2px=kÞ

q

¼ � k

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

Z

k
2p arccosð~p�1Þ

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2ð2px=kÞ
2~p�~p2

q

¼ � k2

4p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

Z

arccosð~p�1Þ

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2ðuÞ
2~p�~p2

q

¼ � k2

4p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p F arccosð~p� 1Þ; 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

 !

;

ð20Þ

where Fðl; kÞ ¼
R

l

0

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2ðuÞ
q

du is the incomplete

elliptic integral of the first kind. So the probability density

of the contact pressure for ~p 2 ½1; 2	 or equivalently for

fx; yg 2 ½0; p=4	 is

Pð~pÞ ¼ 4

p2

F arccosð~p� 1Þ; 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

To extend it to a periodic domain x; y 2 R and for

~p 2 ½0; 2	, one needs simply to take the absolute value of

the argument in arccos and divide the PDF by a factor of

two

Pð~pÞ ¼ 2

p2

F arccosðj1� ~pjÞ; 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~p� ~p2
p

ð21Þ

This expression is depicted in Fig. 13 and compared with

numerically evaluated probability density of a wavy sur-

face computed on the grid of 2� 108 equally spaced points

in the region fx; yg 2 ½0; p=4	 using 500 bins.

Appendix 2: Data

In Table 1 some numerical results are presented (pressure,

area and perimeter) as well as coefficients of Gielis for-

mula (5) that fit the corresponding area shape.
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