
Practical Work: Coding the Penalty Contact
Element in a toy-FEM code

Vladislav A. Yastrebov

February 2025

1. Introduction
In this practical work, we will code the penalty contact element in a toy-FEM
code. The hardcoded truss element and a rigid wall obstacle are shown in the
figure below. The boundary conditions are as follows: + Two left nodes are
clamped (displacements are fixed Ux = Uy = 0) + On the middle node, a vertical
force Fy, pointing downwards, is applied.

Figure 1: Truss element and rigid wall obstacle

Our task is to code the penalty contact element to prevent the structure from
penetrating the rigid wall.

2. Step-by-step instruction
1. Check out the definition of the rigid obstacle (plane wall):

Rigid wall (obstacle) geometry
outward normal vector
normal = np.array([-1,5])
normal = normal/np.linalg.norm(normal)

tangent = normal.copy()
tangent[0] = normal[1]

1

tangent[1] = -normal[0]

y = y_wall + tangent[1]/tangent[0] * (x-x_wall)
x_wall = 5
y_wall = -1

The geometry is given by a single point xw = {xwall, ywall} = {5,−1} and a
normal vector n = {nx, ny} = {−1, 5}, the tangent vector is t = {tx, ty} = {5, 1}.

2. Now we need to find normal projections for all nodes of the truss element
onto the rigid wall, check the following code:

FIXME: code the projection of every node on the rigid wall
proj_x = 0 # ?? to be defined
proj_y = 0 # ?? to be defined
plt.plot(proj_x,proj_y,"v",color="r")

It is for you to code the projection of every node on the rigid wall. We recall
that the point coordinates in the current configuration are given by variables xi
and yi for the i-th node.

3. Define the gap function as a difference between the node coordinates and
its projection on the rigid wall:

define the gap = (xi-proj).normal
FIXME: code the gap expression
gap = 0 # ?? to be defined

1. Now, we will code the residual vector. For the penalty contact element,
the residual vector is given by:

[R([u])] = [RS([u])] + [RC([u])],

where [RS([u])] is the residual vector from the solid mechanics problem
(truss element) and [RC([u])] is the residual vector from the contact problem
(penalty contact element). The contact residual vector for a single node is
given by:

RC
i =

{
εn|gn|n, if gn < 0,
0, if gn ≥ 0,

where gn is the normal gap function (that we have already defined as
gap), εn is the penalty parameter, and n is the normal vector to the i-th
element. The normal vector comes from the fact that for a single element,
the variation of the normal gap is given by

δgn = δ(x− xw) · n = δx · n,

where δx is the variation of the node coordinates and xw is the projection
of the node on the rigid wall. If there’s no contact, the associated add-on
from the contact problem is zero. You will need to encode this expression
in the following code:

2

FIXME: code the residual vector
F[ii] += 0 # ?? to be defined
F[jj] += 0 # ?? to be defined

where ii and jj are the global indices of the DOFs for the i-th node.

2. Now, we will code the tangent matrix. For the penalty contact element,
the tangent matrix is given by:

[K([u])] = [KS([u])] + [KC([u])],

where [KS([u])] is the tangent matrix from the solid mechanics problem
(truss element) and [KC([u])] is the tangent matrix from the contact
problem (penalty contact element). The contact tangent matrix for a
single node is given by:

[KC
i] = ∂RC

i

∂δui
=

{
εnn⊗ n, if gn < 0,
0, if gn ≥ 0,

where ⊗ is the tensor product. You will need to encode this expression in
the following code:

FIXME: code the tangent matrix
mesh.K[ii][ii] += 0 # ?? to be defined
mesh.K[ii][ii+1] += 0 # ?? to be defined
mesh.K[ii+1][ii] += 0 # ?? to be defined
mesh.K[ii+1][ii+1] += 0 # ?? to be defined

where ii and jj are the global indices of the DOFs for the i-th node.

3. Effect of the penalty parameter
Now, as soon as the code is working, we can play with the penalty parameter,
defined as penalty in the code. Check how the topology of the contact and the
resulting penetration are affected by the penalty parameter.

4. Solution
The solution is given in the file solved_contact.py.

3

	1. Introduction
	2. Step-by-step instruction
	3. Effect of the penalty parameter
	4. Solution

